SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:gup.ub.gu.se/177394"
 

Search: onr:"swepub:oai:gup.ub.gu.se/177394" > The Lovász v functi...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

The Lovász v function, SVMs and finding large dense subgraphs

Jethava, Vinay, 1982 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Martinsson, Anders, 1988 (author)
Gothenburg University,Göteborgs universitet,Institutionen för matematiska vetenskaper, matematisk statistik,Department of Mathematical Sciences, Mathematical Statistics,Chalmers tekniska högskola,Chalmers University of Technology,University of Gothenburg
Bhattacharyya, C. (author)
Indian Institute of Science
show more...
Dubhashi, Devdatt, 1965 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
ISBN 9781627480031
2012
2012
English.
In: 26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012, Lake Tahoe, United States, 3-6 December 2012. - 1049-5258. - 9781627480031 ; 2, s. 1160-1168
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • The Lovász v function of a graph, a fundamental tool in combinatorial optimization and approximation algorithms, is computed by solving a SDP. In this paper we establish that the Lovász v function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM - v graphs, on which the Lovász v function can be approximated well by a one-class SVM. This leads to novel use of SVM techniques for solving algorithmic problems in large graphs e.g. identifying a planted clique of size Θ( √n) in a random graph G(n; 1/2 ). A classic approach for this problem involves computing the v function, however it is not scalable due to SDP computation. We show that the random graph with a -planted clique is an example of SVM - v graph. As a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. We introduce the notion of common orthogonal labelling and show that it can be computed by solving a Multiple Kernel learning problem. It is further shown that such a labelling is extremely useful in identifying a large common dense subgraph in multiple graphs, which is known to be a computationally difficult problem. The proposed algorithm achieves an order of magnitude scalability compared to state of the art methods.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences (hsv//eng)

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view