SwePub
Sök i LIBRIS databas

  Utökad sökning

onr:"swepub:oai:gup.ub.gu.se/325211"
 

Sökning: onr:"swepub:oai:gup.ub.gu.se/325211" > Impact of delineati...

Impact of delineation errors on the estimated organ at risk dose and of dose errors on the normal tissue complication probability model

Mövik, Louise, 1993 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för kliniska vetenskaper, Avdelningen för medicinsk strålningsvetenskap,Institute of Clinical Sciences, Department of Medical Radiation Sciences
Bäck, Anna, 1972 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för kliniska vetenskaper,Institute of Clinical Sciences
Pettersson, Niclas, 1974 (författare)
Gothenburg University,Göteborgs universitet,Institutionen för kliniska vetenskaper,Institute of Clinical Sciences
 (creator_code:org_t)
2023-02-07
2023
Engelska.
Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 50:3, s. 1879-1892
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Background: Normal tissue complication probability (NTCP) models are often based on doses retrieved from delineated volumes. For retrospective dose-response studies focusing on organs that have not been delineated historically, automatic segmentation might be considered. However, automatic segmentation risks generating considerable delineation errors and knowledge regarding how these errors impact the estimated organ dose is important. Furthermore, organ-at-risk (OAR) dose uncertainties cannot be eliminated and might affect the resulting NTCP model. Therefore, it is also of interest to study how OAR dose errors impact the NTCP modeling results. Purpose: To investigate how random delineation errors of the proximal bronchial tree, heart, and esophagus impact the estimated OAR dose, and to investigate how random errors in the doses used for dose-response modeling affect the estimated NTCPs. Methods: We investigated the impact of random delineation errors on the estimated OAR dose using the treatment plans of 39 patients treated with conventionally fractionated radiation therapy of non-small-cell lung cancer. Study-specific reference structures were defined by manually contouring the proximal bronchial tree, heart and esophagus. For each patient and organ, 120 reshaped structures were created by introducing random shifts and margins to the entire reference structure. The mean and near-maximum dose to the reference and reshaped structures were compared. In a separate investigation, the impact of random dose errors on the NTCP model was studied performing dose-response modeling with study sets containing treatment outcomes and OAR doses with and without introduced errors. Universal patient populations with defined population risks, dose-response relationships and distributions of OAR doses were used as ground truth. From such a universal population, we randomly sampled data sets consisting of OAR dose and treatment outcome into reference populations. Study sets of different sizes were created by repeatedly introducing errors to the OAR doses of each reference population. The NTCP models generated with dose errors were compared to the reference NTCP model of the corresponding reference population. Results: A total of 14 040 reshaped structures with random delineation errors were created. The delineation errors resulted in systematic mean dose errors of less than 1% of the prescribed dose (PD). Mean dose differences above 15% of PD and near-maximum doses differences above 25% of PD were observed for 211 and 457 reshaped structures, respectively. Introducing random errors to OAR doses used for dose-response modeling resulted in systematic underestimations of the median NTCP. For all investigated scenarios, the median differences in NTCP were within 0.1 percentage points (p.p.) when comparing different study sizes. Conclusions: Introducing random delineation errors to the proximal bronchial tree, heart and esophagus resulted in mean dose and near-maximum dose differences above 15% and 25% of PD, respectively. We did not observe an association between the dose level and the magnitude of the dose errors. For the scenarios investigated in this study, introducing random errors to OAR doses used for dose-response modeling resulted in systematic underestimations of the median NTCP for reference risks higher than the universal population risk. The median NTCP underestimation was similar for different study sizes, all within 0.1 p.p.

Ämnesord

NATURVETENSKAP  -- Fysik -- Annan fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Other Physics Topics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Klinisk medicin -- Radiologi och bildbehandling (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Clinical Medicine -- Radiology, Nuclear Medicine and Medical Imaging (hsv//eng)

Nyckelord

automatic segmentation
dose errors
dose-response modeling

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Mövik, Louise, 1 ...
Bäck, Anna, 1972
Pettersson, Nicl ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
och Annan fysik
MEDICIN OCH HÄLSOVETENSKAP
MEDICIN OCH HÄLS ...
och Klinisk medicin
och Radiologi och bi ...
Artiklar i publikationen
Medical Physics
Av lärosätet
Göteborgs universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy