SwePub
Sök i LIBRIS databas

  Extended search

onr:"swepub:oai:research.chalmers.se:93f885e8-99cb-494e-a72a-4d040e01f00b"
 

Search: onr:"swepub:oai:research.chalmers.se:93f885e8-99cb-494e-a72a-4d040e01f00b" > Channel Scalability...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Channel Scalability of Silicon Nitride (De-)multiplexers for Optical Interconnects at 1 μm

Caut, Alexander, 1994 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Girardi, Marcello, 1991 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Torres Company, Victor, 1981 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show more...
Larsson, Anders, 1957 (author)
Chalmers tekniska högskola,Chalmers University of Technology
Karlsson, Magnus, 1967 (author)
Chalmers tekniska högskola,Chalmers University of Technology
show less...
 (creator_code:org_t)
2024
2024
English.
In: Journal of Lightwave Technology. - 0733-8724 .- 1558-2213. ; 42:1, s. 276-286
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • This paper presents an investigation of the channel scalability of silicon nitride (Si3N4)-based (de-)multiplexers in the 1-μm band (1015-1055 nm). We discuss 4-, 8- and 16-channel demultiplexers based on arrayed waveguide gratings (AWGs) and cascaded Mach-Zehnder interferometers (MZIs), with corresponding channel spacings of 8, 4 and 2 nm. Gaussian and flat-top response devices are considered for both technologies and we analyze the insertion loss, temperature sensitivity, response flatness, footprint and crosstalk (XT). We study the impact of the number of channels on the insertion loss and XT level. In the experimental part, we demonstrate a 4-channel Gaussian AWG. We also demonstrate 4-channel Gaussian and flat-top cascaded MZIs, based on multimode interferometers (MMIs) and directional couplers (DCs). The AWG is attractive due to its small footprint but its high manufacturing complexity makes the device more prone to fabrication defects, which can lead to higher loss and higher XT. For the Gaussian AWG and MZI, the XT level is approximately the same and increases with the number of channels from -28 to -23 dB at 4 and 16 channels respectively. The flat-top MZI has no extra-loss with respect to the flat-top AWG and has a better tolerance to high temperature operations. However, due to wavelength sensitive DCs, the XT of the flat-top MZI is higher than that of the flat-top AWG except for a 16-channel system.

Subject headings

NATURVETENSKAP  -- Fysik -- Atom- och molekylfysik och optik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Atom and Molecular Physics and Optics (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Kommunikationssystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Communication Systems (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Annan elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Other Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Keyword

Channel spacing
Vertical cavity surface emitting lasers
multimode interferometer
manufacturing tolerance
arrayed waveguide grating
Arrayed waveguide gratings
Crosstalk
crosstalk
insertion loss
Insertion loss
Propagation losses
channel spacing
Silicon
Mach-Zehnder interferometer
silicon nitride
Optical interconnects

Publication and Content Type

art (subject category)
ref (subject category)

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view