SwePub
Sök i LIBRIS databas

  Utökad sökning

AMNE:(Förnybara energikällor)
 

Sökning: AMNE:(Förnybara energikällor) > Energy studies /

Energy studies / W. Shepherd, D.W. Shepherd.

Shepherd, W. (William), 1928- (author.)
Shepherd, D. W., (author.)
ISBN 9781848168503 (hardback)
Third edition.
London : Imperial College Press, [2014]
Engelska xxviii, 526 pages
  • swepub:Mat__t
Innehållsförteckning Abstract Ämnesord
Stäng  
  • Machine generated contents note: ch. 1 Energy and Power -- 1.1. Energy Conversion -- 1.2. Mechanical Energy -- 1.2.1. Linear motion -- 1.2.2. Rotational motion -- 1.3. Electrical Energy -- 1.4. Chemical Energy -- 1.5. Nuclear Energy -- 1.6. Thermal Energy -- 1.7. Thermodynamics and Heat Energy -- 1.7.1. Quantity of heat -- 1.7.2. Mechanical equivalent of heat -- 1.7.3. The first law of thermodynamics -- 1.7.4. The second law of thermodynamics -- 1.7.4.1. Ideal heat engine -- 1.7.4.2. Practical heat engine -- 1.7.4.3. Ideal reverse heat engine (heat pump) -- 1.7.5. Worked examples on thermodynamics and heat energy -- 1.8. Entropy -- 1.8.1. Entropy in heat-work systems -- 1.8.2. Entropy on a cosmic scale -- 1.9. Power -- 1.10. Units and Conversion Factors -- 1.11. Problems on Energy and Power -- References -- ch. 2 Energy Resources and Energy Use -- 2.1. Energy Input to the Earth -- 2.1.1. Solar radiation and annual variation -- 2.1.2. Terrestrial energy from inside the earth.
  • Contents note continued: 2.1.3. Tidal (gravitational) input energy -- 2.2. Energy Flow upon Earth from Natural Sources -- 2.3. Energy Outflow from the Earth -- 2.4. Energy Stored Within the Fossil Fuels -- 2.5. Energy Production and Consumption -- 2.5.1. Energy consumption in the world -- 2.5.2. Energy production and use in the UK -- 2.5.3. Energy production and use in the USA -- 2.5.4. World fossil fuel production and consumption -- 2.6. Risks Associated with Energy Systems -- 2.6.1. Industrial accidents and industrial diseases -- 2.6.2. Large-scale accidents and sabotage -- 2.6.3. Management of energy waste -- 2.6.4. Ecosystem effects -- 2.6.5. Water supply problems -- 2.6.6. Emissions -- 2.6.6.1. Carbon dioxide emissions -- 2.6.6.2. Gaseous emissions and the greenhouse"r; effect -- 2.6.6.3. Carbon trading -- 2.7. Summary: Where Do We Go from Here? -- 2.7.1. An energy strategy -- 2.8. Problems and Review Questions -- References -- ch. 3 Electricity -- 3.1. Introduction.
  • Contents note continued: 3.2. Some Basic Electrical Relationships -- 3.2.1. Voltage, current and power -- 3.2.2. Worked examples on electrical circuits -- 3.3. The Generation of Electricity -- 3.4. The Siting of Electrical Power Plants -- 3.4.1. Fuel supply -- 3.4.2. Water supply -- 3.4.3. Land elevation -- 3.4.4. Road and rail access -- 3.4.5. Height of the structures -- 3.4.6. Disposal of waste products -- 3.4.7. Proximity to populated areas -- 3.4.8. Environmental implications -- 3.5. World Electricity Consumption -- 3.6. UK Electricity -- 3.6.1.Organization in 2010 -- 3.6.2. Consumption and supply -- 3.6.3.Comparative costs of electrical generation in the UK -- 3.7. US Electricity Consumption and Production -- 3.8.Combined Heat and Power (CHP) -- 3.8.1. Technologies used in current UK CHP schemes -- 3.8.2. CHP in the UK -- 3.8.3. CHP in the USA -- 3.9. Efficient Utilization of Electrical Energy -- 3.9.1. Avoiding waste -- 3.9.2. Monitoring and control -- 3.9.3. Redesigning to reduce energy costs.
  • Contents note continued: 3.9.4. Maintenance of equipment -- 3.9.5. Power factor correction -- 3.9.6. Maintenance of supply current waveform -- 3.9.7. Choice and use of electric motors -- 3.9.8. Load factor -- 3.9.9. Choice of lighting systems -- 3.10. Problems and Review Questions -- References -- ch. 4 Coal -- 4.1. The History and Status of Coal -- 4.1.1. Fossil fuel resources -- 4.1.2.Composition and ranking of coal -- 4.1.3. Coal mining -- 4.2. World Reserves, Production and Consumption of Coal -- 4.2.1. World coal reserves -- 4.2.2. World coal production -- 4.2.3. World coal consumption -- 4.2.4. UK coal production and consumption -- 4.2.5. US coal production and consumption -- 4.3. Coal Transportation -- 4.3.1. Surface transportation -- 4.3.2. Coal slurry pipelines -- 4.4. Emissions and Effluents from Coal -- 4.4.1. Open coal fires -- 4.4.2. Effluents due to coal burning -- 4.4.2.1. Sulphur oxides (SOx) -- 4.4.2.2. Nitrogen oxides (NOx) -- 4.4.2.3. Particulates -- 4.4.2.4. Carbon dioxide.
  • Contents note continued: 4.4.2.5. Carbon dioxide emissions due to coal -- 4.4.2.6. An American case study. The side effects of a coal plant -- 4.5. Carbon Capture and Storage (CCS) -- 4.6. Advanced Coal Technologies -- 4.6.1. Fluidized-bed combustion -- 4.6.2.Combined-cycle generation -- 4.7. Liquid Fuels from Coal -- 4.7.1. Indirect liquefaction -- 4.7.2. Pyrolysis -- 4.7.3. Solvent extraction -- 4.7.4. Direct hydrogenation (catalytic liquefaction) -- 4.8. Problems and Review Questions -- References -- ch. 5 Oil -- 5.1. Geological Formation -- 5.2. Origin and Extraction of Oil -- 5.3. History and Development of the Petroleum Industry -- 5.3.1. The Seven Sisters -- 5.3.2. European oilfields -- 5.3.3. OPEC -- 5.3.4. Major oil areas -- 5.4. World Oil Reserves -- 5.5. World Production and Consumption of Crude Oil -- 5.5.1. World oil production -- 5.5.2. World oil consumption -- 5.5.3. UK oil production and consumption -- 5.5.4. US oil production and consumption -- 5.6. Unconventional Liquid Fossil Fuels.
  • Contents note continued: 5.6.1. Oil shale -- 5.6.1.1. Oil shale mining -- 5.6.1.2. In situ combustion -- 5.6.2. Tar sands (oil sands) -- 5.7. Environmental Issues -- 5.8. Problems and Review Questions -- References -- ch. 6 Natural Gas -- 6.1. Nature and Origin of Natural Gas -- 6.2. History and Development -- 6.3. Natural Gas Reserves -- 6.4. Production and Consumption of Natural Gas -- 6.4.1. World natural gas production -- 6.4.2. World natural gas consumption -- 6.4.3. UK natural gas production and consumption -- 6.4.4. US natural gas production and consumption -- 6.5. Unconventional Sources of Natural Gas -- 6.5.1. Coal-bed methane -- 6.5.1.1. World reserves of coal-bed methane -- 6.5.1.2. US reserves of coal-bed methane -- 6.5.2. Natural gas hydrates -- 6.5.3. Shale gas -- 6.5.4. Tight gas -- 6.6. Environmental Aspects of Natural Gas -- 6.7. Synthetic Gas from Coal -- 6.8. Problems and Review Questions -- References -- ch. 7 Geothermal Energy -- 7.1. Physical Basis of Geothermal Energy.
  • Contents note continued: 7.2. Geological Structure of the Earth -- 7.3. Origin of Geothermal Heat Flow -- 7.4. Geothermal Energy Resources -- 7.5. Geothermal Reservoirs -- 7.6. Locations and Types of Principal Geothermal Sources -- 7.6.1. Dry steam sources -- 7.6.2. Wet steam sources -- 7.6.3. Hot brine sources -- 7.6.4. Dry rock sources -- 7.6.5. Molten magma -- 7.6.6. Worldwide applications -- 7.7. Geothermal Prospects in the UK -- 7.7.1. Shallow drilling -- 7.7.2. Worked example -- 7.8. Geothermal Uses in the USA and Elsewhere -- 7.8.1. Hot springs and bathing spas (balneology) -- 7.8.2. Agriculture -- 7.8.3. Aquaculture -- 7.8.4. Industry -- 7.9. Geothermal District Heating -- 7.10. Geothermal Heat Pumps -- 7.10.1. Heating -- 7.10.2. Cooling -- 7.11. Electricity Generation from Geothermal Sources -- 7.11.1. Worldwide geothermal electrical power production -- 7.11.2. Technologies of geothermal electrical power generation -- 7.11.3. Locations of geothermal electricity-generating stations.
  • Contents note continued: 7.12. Environmental Features of Geothermal Power -- 7.12.1. Geothermal site exploration and development -- 7.12.2. Protection of the local atmosphere -- 7.12.3. Protection of groundwater -- 7.12.4. Enhancement of reservoir water -- 7.12.5. Ecological effects of geothermal plants -- 7.12.6. Effects on local geological structure -- 7.13. Problems and Review Questions -- References -- ch. 8 Nuclear Energy -- 8.1. Basic Atomic Theory -- 8.2. Basic Nuclear Theory -- 8.2.1. Nuclear fission -- 8.2.2. Worked examples -- 8.3. Radioactivity -- 8.3.1. Nature of radioactivity -- 8.3.2. Energy and decay rate -- 8.3.3. Worked examples -- 8.4. Nuclear Radiation -- 8.4.1. Forms of radiation -- 8.4.2. Units of measurement of radiation -- 8.4.3. Effects of nuclear radiation -- 8.4.4. Sources and amounts of nuclear radiation -- 8.4.4.1. Natural radiation sources -- 8.4.4.2. Man-made sources -- 8.4.5. Uses of nuclear radiation -- 8.4.5.1. Geological dating -- 8.4.5.2. Archaeological dating.
  • Contents note continued: 8.4.5.3. Medical tracer elements -- 8.4.5.4. Small nuclear power packs -- 8.4.5.5. Biological effects on human tissue -- 8.5. Nuclear Reactors -- 8.5.1. Thermal (fission) reactors -- 8.5.2. Uranium supplies -- 8.5.3. Plutonium -- 8.5.4. Fast breeder reactors -- 8.5.5. Reactor safety -- 8.5.6. Nuclear reactor accidents -- 8.5.6.1. Three Mile Island -- 8.5.6.2. Chernobyl -- 8.5.6.3. Fukushima Daiichi -- 8.5.6.3.1. Consequences -- 8.5.6.3.2. Radioactive releases -- 8.5.6.3.3. Severity of the incident -- 8.5.6.3.4. Public perception -- 8.6. Nuclear Waste -- 8.6.1. Sources of waste -- 8.6.2. Waste disposal -- 8.6.3. Terrorist action -- 8.7. Nuclear-Powered Electricity Generation -- 8.7.1. Nuclear generation in the USA -- 8.7.2. Nuclear generation in the UK -- 8.8. Nuclear Fusion -- 8.8.1. Basic theory -- 8.8.2. Nuclear fusion materials -- 8.8.2.1. Supply of deuterium -- 8.8.2.2. Supply of lithium -- 8.8.2.3. Supply of tritium -- 8.8.3. Nuclear fusion reactors.
  • Contents note continued: 8.8.3.1. Nuclear plasma properties -- 8.8.3.2. Terrestrial fusion -- 8.8.4. Fusion reactor research -- 8.8.4.1. JET -- 8.8.4.2. ITER -- 8.8.5. Advantages of nuclear fusion as an energy option -- 8.8.5.1. Fuel supply advantages -- 8.8.5.2. Zero emissions/green energy -- 8.8.5.3. Zero high-level nuclear waste -- 8.8.5.4. Zero risk of nuclear catastrophe -- 8.8.5.5. Modest land use and plentiful site options -- 8.8.5.6. No intermittency of supply -- 8.9. Problems and Review Questions -- References -- ch. 9 Water Energy -- 9.1. Hydroelectric Power Generation -- 9.1.1. Principles of hydroelectric plant operation -- 9.1.2. Types of hydraulic turbine -- 9.1.2.1. Impulse turbines -- 9.1.2.2. Reaction turbines -- 9.1.2.3. Axial flow turbines -- 9.1.3. Pumped storage systems -- 9.1.4. Worked examples on hydroelectric power generation -- 9.2. Tidal Power Schemes -- 9.3. Methods of Utilizing Tidal Power -- 9.3.1. Tidal lagoons -- 9.3.2. Tidal stream farms -- 9.3.3. Tidal barrages.
  • Contents note continued: 9.3.3.1. Power available from a tidal barrage -- 9.3.3.2. Costs of tidal barrage schemes -- 9.3.3.3.Combination of a pumped storage facility with a tidal barrage scheme -- 9.3.3.4. Features of tidal barrage schemes -- 9.3.3.5. Worked examples on tidal barrage schemes -- 9.4. Wave Power -- 9.4.1. Basic properties of ideal deep-water waves -- 9.4.2. Power extractable from practical deep-water waves -- 9.4.3. Worked examples on wave energy -- 9.4.4. Types of wave power converters -- 9.4.5. Worked examples on wave-energy converter devices -- 9.4.6. Features of wave power systems: Summary -- 9.5. Problems and Review Questions -- References -- ch. 10 Wind Energy -- 10.1. Nature and Origin of the Wind -- 10.1.1. Atmospheric pressure -- 10.1.2. Atmospheric density -- 10.2. The Availability of Wind Supply -- 10.2.1. Global survey -- 10.2.2. Energy content of the wind -- 10.2.3. Wind energy supply in Europe -- 10.2.4. Wind energy supply in the USA.
  • Contents note continued: 10.3. Power Available in the Wind -- 10.3.1. Theoretical power available -- 10.3.2. Maximum theoretical power extractable from the wind -- 10.3.3. Practical power extractable from the wind -- 10.3.4. Tip-speed ratio -- 10.4. Mechanical Features of Wind Machines -- 10.4.1. Axial thrust (pressure) -- 10.4.2. The yaw"r; effect -- 10.4.3. Gyroscopic forces and vibrations -- 10.4.4. Centrifugal forces -- 10.4.5. Solidity factor -- 10.4.6. Two rotor blades or three rotor blades? -- 10.4.7. Shaft torque and power -- 10.5. Fixed Rotational Speed or Variable Rotational Speed? -- 10.5.1. Constant speed operation -- 10.5.2. Variable speed operation -- 10.6. Efficiency Considerations in Wind-Powered Turbine Systems -- 10.7. Wind Energy Turbines -- 10.7.1.19th-century windmills -- 10.7.2. Early 20th-century wind energy turbines -- 10.7.3. Later 20th-century wind energy turbines -- 10.8. Modern Large Wind Power Installations -- 10.8.1. Review of some installations.
  • Contents note continued: 10.8.2. Types of wind generator systems -- 10.8.2.1. Fixed-speed and directly coupled cage induction generator -- 10.8.2.2. Variable-speed, doubly fed induction generator -- 10.8.2.3. Variable-speed, direct drive synchronous generator -- 10.9. Vertical Axis Wind Machines -- 10.9.1. The Savonius design -- 10.9.2. The Darrieus design -- 10.9.3. Other forms of vertical axis machine -- 10.10. Worked Numerical Examples on Wind Turbine Operations -- 10.11. Problems and Review Questions -- References -- ch. 11 Solar Heating of Water or Air -- 11.1. Radiation from the Sun -- 11.2. Seasonal Variation of Solar Radiation -- 11.3. Classification of the Collection of Solar Energy -- 11.4. Solar Water Heating (Domestic) -- 11.4.1. Operation of a garden greenhouse -- 11.4.2. Solar flat-plate collectors -- 11.4.3.A typical domestic solar water heating system -- 11.4.4. Worked examples involving solar flat-plate collectors -- 11.5. Solar Water Heating (Industrial).
  • Contents note continued: 11.5.1. Solar tracking systems -- 11.5.1.1. Parabolic dish collector -- 11.5.1.2. Solar power tower -- 11.5.1.3. Linear focus collectors -- 11.5.2. Solar non-tracking systems -- 11.5.2.1. Evacuated tube collectors -- 11.5.2.2.Compound parabolic concentrator -- 11.5.3. Worked examples involving solar thermionic concentrator systems -- 11.6. Passive Solar Space Heating of Buildings -- 11.6.1. Direct gain solar systems -- 11.6.2. Indirect gain solar systems -- 11.6.2.1. Thermal storage wall -- 11.6.2.2. Solar greenhouse (sunspace) -- 11.6.2.3. Roof pond -- 11.6.2.4. Solar salt pond -- 11.7. Problems and Review Questions -- References -- Additional References -- ch. 12 Solar Photovoltaic Conversion -- 12.1. Basic Features of Solar Cells and Solar Systems -- 12.2. Physical Nature of Semiconductor Materials -- 12.2.1. Group-3 (acceptor) impurities -- 12.2.2. Group-5 (donor) impurities -- 12.3. Photovoltaic Materials -- 12.3.1. Crystalline silicon (c--Si).
  • Contents note continued: 12.3.2. Amorphous (uncrystalline) silicon (a--Si) -- 12.3.3. Materials other than silicon -- 12.4. Cost of Solar Photovoltaic Electricity -- 12.5. Operation of the Semiconductor Diode and Solar Photovoltaic Cell -- 12.6. Physical Properties of the Solar Photovoltaic Cell -- 12.7. Electrical Output Properties of the Solar Photovoltaic Cell -- 12.7.1. Maximum power delivery -- 12.7.2. Equivalent circuits -- 12.7.3. Load lines in the current--voltage plane -- 12.7.4. Arrays of solar photovoltaic cells -- 12.7.5. Effect of temperature on solar cell operation -- 12.8. Applications of Photovoltaic Cells -- 12.9. The Future Challenge for Photovoltaics -- 12.10. Worked Examples -- 12.11. Problems and Review Questions -- References -- ch. 13 Biological Energy and Chemical Energy -- 13.1. Biomass and Biofuels -- 13.1.1. Natural vegetation -- 13.1.2. Energy tree plantations -- 13.1.3. Specific energy crops -- 13.1.4. Use of wastes -- 13.1.5. Water-based biomass -- 13.2. Photosynthesis.
  • Contents note continued: 13.3. Methods of Industrial Biomass Conversion -- 13.3.1.Combustion -- 13.3.2. Pyrolysis -- 13.3.3. Gasification of biomass -- 13.3.4. Liquid and gaseous fuels from biomass -- 13.3.4.1. Chemical reduction -- 13.3.4.2. Alcoholic fermentation (ethanol) -- 13.3.4.3. Anaerobic digestion to produce biogas -- 13.4. Wood as a Fuel -- 13.5. Energy from Wastes -- 13.5.1. Solid waste disposal in landfill sites -- 13.5.2. Solid waste disposal using municipal incinerators (combustors) -- 13.5.3. Worked examples on solid waste incineration -- 13.5.4. Liquid and gaseous wastes -- 13.6. The Fuel Cell -- 13.7. Problems and Review Questions -- References -- ch. 14 The Energy Future -- 14.1. The Energy Problems -- 14.2. An Energy Strategy -- 14.3. The Long-Term Energy Future -- 14.3.1. Nuclear fission using breeder reactors -- 14.3.2. Solar energy -- 14.3.3. Controlled thermonuclear fusion -- 14.3.4. Geothermal energy -- 14.4. What Shall We Do When the Oil Runs Out? -- References.
  • This book considers the various options of renewable energy, including water energy, wind energy and biomass, solar thermal and solar photovoltaic energy. And should the nuclear option remain open?

Ämnesord

Power resources.  (LCSH)
Energy conversion.  (LCSH)
Energy consumption.  (LCSH)
Renewable energy sources.  (LCSH)
Energikällor  (sao)
Förnybara energikällor  (sao)
Energiförbrukning  (sao)
Combustibles fossiles.  (ram)
Énergie hydraulique.  (ram)
Énergie solaire.  (ram)
Électricité.  (ram)
Gaz.  (ram)
Géothermie.  (ram)
Énergie nucléaire.  (ram)
Power resources.  (fast)
Power resources  (LCSH)
Renewable energy sources  (LCSH)
Energy consumption  (LCSH)

Publikations- och innehållstyp

TJ163.2 (LCC)
333.79 (DDC)
P.08 (kssb/8 (machine generated))

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy