SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Rintala Jukka)
 

Sökning: WFRF:(Rintala Jukka) > Developing a food w...

Developing a food waste-based volatile fatty acids platform using an immersed membrane bioreactor

Wainaina, Steven (författare)
Högskolan i Borås,Akademin för textil, teknik och ekonomi
Rintala, Jukka, Prof (opponent)
Faculty of Engineering and Natural Sciences, Tampere University, Finland
 (creator_code:org_t)
ISBN 9789188838766
Borås : Högskolan i Borås, 2020
Engelska.
Serie: Skrifter från Högskolan i Borås, 0280-381X ; 107
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Approximately 1.3 billion tons of food waste is produced globally every year. In principle, all the resources in the supply chain are lost (e.g. land, energy, and water) when the food is not consumed as intended. Anaerobic digestion is an established biological technology to treat food waste, and is mainly employed for recovery of energy in the form of biogas. Volatile fatty acids (VFAs) are formed as intermediate products of the anaerobic digestion process, and can be applied as precursors for various essential biomaterials. The manipulation of the anaerobic digestion process to synthesize these intermediates instead of biogas is considered to recover more value from food waste. However, some bottlenecks that prevent large-scale production and application of VFAs still exist. Among the key issues to be addressed are the difficulty in recovering the VFAs from the fermentation medium and the overall low product yields. The goals of the present thesis were: 1) to investigate methods to boost the production of VFAs from food waste; 2) to continuously recover VFAs from food waste fermentation medium; 3) to determine the changes in the microbial structure during high organic loading of food waste in membrane bioreactors; and 4) to study a novel approach for applying food waste-derived VFAs for cultivating edible filamentous fungi.For continuous product recovery at high yields, an immersed membrane bioreactor was constructed with robust cleaning capabilities to withstand the complex anaerobic digestion medium. The membrane bioreactor was first operated without pH control and a yield of 0.54 g VFA/g VSadded was achieved when an organic loading rate of 2 gVS/L/d was applied. Moreover, only a 16.4% reduction in the permeate flux during a 40-day operation period was recorded. In the second experimental work, the immersed membrane bioreactor system was subjected to high organic loading rates of 4, 6, 8, and 10 g VS/L/d as a tool of manipulating the anaerobic digestion process towards high VFAs and hydrogen production. The highest yield of VFAs was attained at 6 g VS/L/d (0.52 g VFA/gVSadded), while at 8 g VS/L/d, a maximal hydrogen yield of 14.7 NmL/gVSadded was obtained. An analysis of the microbial structure revealed that the presence of Clostridium resulted in high production of acetate, butyrate and caproate. On the other hand, the relative abundance of Lactobacillus was found to influence lactate biosynthesis.Cultivation of edible filamentous fungi presents a novel possibility for application of food waste-derived VFAs. Due to the growing demand of single-cell protein, one of the potential uses for the fungal biomass is the production of animal feed. In this thesis, an edible filamentous fungus, Rhizopus oligosporus was grown solely on the VFAs recovered from the membrane bioreactors. It was revealed that high concentrations could inhibit fungal growth; thus, the dilution of the VFAs solution used as substrate was necessary. Furthermore, when a fed-batch cultivation technique was applied, a four-fold improvement in the biomass production relative to standard batch cultivation was realized. A maximum biomass yield of 0.21 ± 0.01g dry biomass/ g VFAs COD eq. consumed, containing 39.28 ± 1.54% crude protein, was obtained. With further improvements in the VFAs uptake and the biomass yield, this novel concept could be a fundamental step in converting anaerobic digestion facilities into biorefineries.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Miljöbioteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Biotechnology (hsv//eng)

Nyckelord

food waste
anaerobic digestion
volatile fatty acids
immersed membrane bioreactor
edible filamentous fungi
Resource Recovery
Resursåtervinning

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Wainaina, Steven
Rintala, Jukka, ...
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Miljöbioteknik
Delar i serien
Skrifter från Hö ...
Av lärosätet
Högskolan i Borås

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy