SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Anderson Joseph)
 

Sökning: WFRF:(Anderson Joseph) > ROC :

ROC : A Reconfigurable Optical Computer for Simulating Physical Processes

Anderson, Jeff (författare)
The George Washington University, Washington, DC, USA
Kayraklioglu, Engin (författare)
The George Washington University, Washington, DC, USA
Sun, Shuai (författare)
The George Washington University, Washington, DC, USA
visa fler...
Crandall, Joseph (författare)
The George Washington University, Washington, DC, USA
Alkabani, Yousra, 1981- (författare)
Högskolan i Halmstad,Centrum för forskning om inbyggda system (CERES),The George Washington University, Washington, DC, USA
Narayana, Vikram (författare)
Intel Corporation, Santa Clara, CA, USA
Sorger, Volker (författare)
The George Washington University, Washington, DC, USA
El-Ghazawi, Tarek (författare)
The George Washington University, Washington, DC, USA
visa färre...
 (creator_code:org_t)
2020-03-09
2020
Engelska.
Ingår i: ACM Transactions on Parallel Computing. - New York, NY : Association for Computing Machinery (ACM). - 2329-4949 .- 2329-4957. ; 7:1
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Due to the end of Moore’s law and Dennard scaling, we are entering a new era of processors. Computing systems are increasingly facing power and performance challenges due to both device- and circuit-related challenges with resistive and capacitive charging. Non-von Neumann architectures are needed to support future computations through innovative post-Moore’s law architectures. To enable these emerging architectures with high-performance and at ultra-low power, both parallel computation and inter-node communication on-the-chip can be supported using photons. To this end, we introduce ROC, a reconfigurable optical computer that can solve partial differential equations (PDEs). PDE solvers form the basis for many traditional simulation problems in science and engineering that are currently performed on supercomputers. Instead of solving problems iteratively, the proposed engine uses a resistive mesh architecture to solve a PDE in a single iteration (one-shot). Instead of using actual electrical circuits, the physical underlying hardware emulates such structures using a silicon-photonics mesh that splits light into separate pathways, allowing it to add or subtract optical power analogous to programmable resistors. The time to obtain the PDE solution then only depends on the time-of-flight of a photon through the programmed mesh, which can be on the order of 10’s of picoseconds given the millimeter-compact integrated photonic circuit. Numerically validated experimental results show that, over multiple configurations, ROC can achieve several orders of magnitude improvement over state-of-the-art GPUs when speed, power, and size are taken into account. Further, it comes within approximately 90% precision of current numerical solvers. As such, ROC can be a viable reconfigurable, approximate computer with the potential for more precise results when replacing silicon-photonics building blocks with nanoscale photonic lumped-elements. © 2020 ACM

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering (hsv//eng)

Nyckelord

Accelerator
photonics
partial differential equations

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy