SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Leese H)
 

Search: WFRF:(Leese H) > Sustained Frictiona...

Sustained Frictional Instabilities on Nanodomed Surfaces : Stick Slip Amplitude Coefficient

Quignon, Benoit (author)
Pilkington, Georgia A. (author)
Thormann, Esben (author)
KTH,Yt- och korrosionsvetenskap
show more...
Claesson, Per M. (author)
RISE,KTH,Yt- och korrosionsvetenskap,SP Kemi Material och Ytor
Ashfold, Michael N. R. (author)
Mattia, Davide (author)
Leese, Hannah (author)
Davis, Sean A. (author)
Briscoe, Wuge H. (author)
show less...
 (creator_code:org_t)
2013-11-21
2013
English.
In: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 7:12, s. 10850-10862
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Understanding the frictional properties of nanostructured surfaces is important because of their increasing application in modem minlaturized devices. In this work, lateral force microscopy was used to study the frictional properties between AFM nanotip and surfaces bearing well-defined ranging from tens to hundreds of nanometers. Our results show that the average lateral force varied linearly with applied load, as described by Amontons' first law of friction, although no direct correlation between the sample topographic properties and their measured friction coeffidents was identified. Furthermore, all the nanodomed textures exhibited pronounced osdllations in the shear traces, similar to the dassic stick slip behavior, under all the shear velocities and load regimes studied. That is, the nanotextured topography led to sustained frictional instabilities, effectively with no contact frictional sliding. The amplitude of the stick slip oscillations, ab was found to correlate with the topographic properties of the surfaces and scale linearly with the applied load. In line with the friction coefficient, we define the slope of this linear plot as the stick slip amplitude coeffident (SSAC). We suggest that such stick slip behaviors are characteristics of surfaces with nanotextures and that such local frictional instabilities have important implications to surface damage and wear. We thus propose that the shear characteristics of the nanodomed surfaces cannot be fully described by the framework of Amontons' laws of friction and that additional parameters (e.g., a, and SSAQ are required, when their friction, lubrication, and wear properties are important considerations in related nanodevices.

Subject headings

NATURVETENSKAP  -- Kemi -- Annan kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Other Chemistry Topics (hsv//eng)

Keyword

friction
Amontons' laws
stick-slip
nanotextured surfaces
nanostructured surfaces
nanodomes
nanotribology

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

  • ACS Nano (Search for host publication in LIBRIS)

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view