SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Jolkkonen Mikael)
 

Search: WFRF:(Jolkkonen Mikael) > Studies of an accel...

Studies of an accelerator-driven transuranium burner with hafnium-based inert matrix fuel

Tucek, Kamil (author)
Jolkkonen, Mikael (author)
KTH,Kärnkraftssäkerhet
Wallenius, Janne, 1968- (author)
KTH,Reaktorfysik
show more...
Gudowski, Waclaw (author)
KTH,Kärnkraftssäkerhet
show less...
 (creator_code:org_t)
2007
2007
English.
In: Nuclear Technology. - 0029-5450 .- 1943-7471. ; 157:3, s. 277-298
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • Neutronic and burnup characteristics of an accelerator-driven transuranium burner in a startup mode were studied. Different inert and absorbing matrices as well as lattice configurations were assessed in order to identify suitable fuel and core design configurations. Monte Carlo transport and burnup codes were used in the analyses. The lattice pin pitch was varied to optimize the source efficiency and coolant void worth while respecting key thermal and material-related design constraints posed by fuel and cladding. A HfN matrix appeared to provide a good combination of neutronic, burnup, and safety characteristics: maintaining a hard neutron spectrum, yielding acceptable coolant void reactivity and source efficiency, and alleviating the burnup reactivity swing. A conceptual design of a (TRU,Hf)N fueled, lead-bismuth eutectic-cooled accelerator-driven system was developed. Twice higher neutron fission-to absorption probabilities in Am isotopes were achieved compared to reactor designs relying on ZrN or YN inert matrix fuel. The production of higher actinides in the fuel cycle is hence limited, with a Cm fraction in the equilibrium fuel being similar to 40% lower than for cores with ZrN matrix-based fuel. The burnup reactivity swing and associated power peaking in the core are managed by an appropriate choice of cycle length (100 days) and by core enrichment zoning. A safety analysis shows that the system is protected from instant damage during unprotected beam overpower transient.

Keyword

accelerator-driven system
inert matrix
lead/bismuth
nitride fuels
minor-actinide
systems
transmutation
neutronics
reactors
design
SRA - Energy
SRA - Energi

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view