SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Tjahjanto Denny D.)
 

Search: WFRF:(Tjahjanto Denny D.) > (2015) > Anisotropic viscoel...

  • Tjahjanto, Denny D.KTH,Hållfasthetslära (Inst.),ABB AB, Sweden (author)

Anisotropic viscoelastic-viscoplastic continuum model for high-density cellulose-based materials

  • Article/chapterEnglish2015

Publisher, publication year, extent ...

  • Elsevier BV,2015
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-175624
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-175624URI
  • https://doi.org/10.1016/j.jmps.2015.07.002DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • QC 20151027
  • A continuum material model is developed for simulating the mechanical response of high-density cellulose-based materials subjected to stationary and transient loading. The model is formulated in an infinitesimal strain framework, where the total strain is decomposed into elastic and plastic parts. The model adopts a standard linear viscoelastic solid model expressed in terms of Boltzmann hereditary integral form, which is coupled to a rate-dependent viscoplastic formulation to describe the irreversible plastic part of the overall strain. An anisotropic hardening law with a kinematic effect is particularly adopted in order to capture the complex stress-strain hysteresis typically observed in polymeric materials. In addition, the present model accounts for the effects of material densification associated with through-thickness compression, which are captured using an exponential law typically applied in the continuum description of elasticity in porous media. Material parameters used in the present model are calibrated to the experimental data for high-density (press)boards. The experimental characterization procedures as well as the calibration of the parameters are highlighted. The results of the model simulations are systematically analyzed and validated against the corresponding experimental data. The comparisons show that the predictions of the present model are in very good agreement with the experimental observations for both stationary and transient load cases.

Subject headings and genre

  • TEKNIK OCH TEKNOLOGIER Maskinteknik hsv//swe
  • ENGINEERING AND TECHNOLOGY Mechanical Engineering hsv//eng
  • Anisotropic-kinematic hardening
  • Cellulose-based materials
  • Creep
  • Material densification
  • Stress relaxation
  • Viscoelasticity
  • Viscoplasticity
  • Anisotropy
  • Calibration
  • Cellulose
  • Continuum mechanics
  • Hardening
  • Kinematics
  • Plastic parts
  • Porous materials
  • Anisotropic hardening laws
  • Cellulose based materials
  • Continuum description
  • Experimental characterization
  • Kinematic hardening
  • Linear viscoelastic solid
  • Through-thickness compressions
  • Characterization

Added entries (persons, corporate bodies, meetings, titles ...)

  • Girlanda, O. (author)
  • Östlund, StefanKTH,Hållfasthetslära (Inst.)(Swepub:kth)u1fuxiia (author)
  • KTHHållfasthetslära (Inst.) (creator_code:org_t)

Related titles

  • In:Journal of the mechanics and physics of solids: Elsevier BV84, s. 1-200022-50961873-4782

Internet link

Find in a library

To the university's database

Find more in SwePub

By the author/editor
Tjahjanto, Denny ...
Girlanda, O.
Östlund, Stefan
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
Articles in the publication
Journal of the m ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view