SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Velli M.)
 

Sökning: WFRF:(Velli M.) > Large-Eddy Simulati...

Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics

Miesch, M. (författare)
Matthaeus, W. (författare)
Brandenburg, Axel (författare)
Stockholms universitet,KTH,Nordic Institute for Theoretical Physics NORDITA,Nordiska institutet för teoretisk fysik (Nordita)
visa fler...
Petrosyan, A. (författare)
Pouquet, A. (författare)
Cambon, C. (författare)
Jenko, F. (författare)
Uzdensky, D. (författare)
Stone, J. (författare)
Tobias, S. (författare)
Toomre, J. (författare)
Velli, M. (författare)
visa färre...
 (creator_code:org_t)
2015-07-31
2015
Engelska.
Ingår i: Space Science Reviews. - : Springer Netherlands. - 0038-6308 .- 1572-9672.
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions.

Ämnesord

NATURVETENSKAP  -- Fysik -- Astronomi, astrofysik och kosmologi (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Astronomy, Astrophysics and Cosmology (hsv//eng)
NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

Magnetohydrodynamics
Simulation
Turbulence
Astrophysics
Computational fluid dynamics
Energy dissipation
Flow of fluids
Magnetism
Magnetoplasma
Numerical models
Space research
Astrophysical applications
Electrically conducting fluids
High performance computing
Magnetic reconnections
Magnetohydrodynamic flows
Magnetohydrodynamic turbulence
Small-scale process
Large eddy simulation

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy