SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Hasselmo M. E.)
 

Search: WFRF:(Hasselmo M. E.) > Properties and role...

Properties and role of I-h in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons

Dickson, C. T. (author)
Magistretti, J. (author)
Shalinsky, M. H. (author)
show more...
Fransén, Erik, 1962- (author)
KTH,Numerisk analys och datalogi, NADA
Hasselmo, M. E. (author)
Alonso, A. (author)
show less...
 (creator_code:org_t)
American Physiological Society, 2000
2000
English.
In: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 83:5, s. 2562-2579
  • Research review (peer-reviewed)
Abstract Subject headings
Close  
  • Various subsets of brain neurons express a hyperpolarization-activated inward current (I-h) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant path input to the hippocampal formation, is their ability to generate persistent, Na+-dependent rhythmic subthreshold membrane potential oscillations, which are thought to be instrumental in implementing theta rhythmicity in the entorhinal-hippocampal network. The SCs also display a robust time-dependent inward rectification in the hyperpolarizing direction that may contribute to the generation of these oscillations. We performed whole cell recordings of SCs in in vitro slices to investigate the specific biophysical and pharmacological properties of the current underlying this inward rectification and to clarify its potential role in the genesis of the subthreshold oscillations. In voltage-clamp conditions, hyperpolarizing voltage steps evoked a slow, noninactivating inward current, which also deactivated slowly on depolarization. This current was identified as I-h because it was resistant to extracellular Ba2+, sensitive to Cs+, completely and selectively abolished by ZD7288, and carried by both Na+ and K+ ions. I-h in the SCs had an activation threshold and reversal potential at approximately -45 and -20 mV, respectively. Its half-activation voltage was -77 mV. Importantly, bath perfusion with ZD7288, but not Ba2+ gradually and completely abolished the subthreshold oscillations, thus directly implicating I-h in their generation. Using experimentally derived biophysical parameters for I-h and the low-threshold persistent Na+ current (I-NaP) present in the SCs, a simplified model of these neurons was constructed and their subthreshold electroresponsiveness simulated. This indicated that the interplay between I-NaP and I-h can sustain persistent subthreshold oscillations in SCs. I-NaP and I-h operate in a push-pull fashion where the delay in the activation/deactivation of I-h gives rise to the oscillatory process.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap -- Bioinformatik (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Bioinformatics (hsv//eng)
MEDICIN OCH HÄLSOVETENSKAP  -- Medicinska och farmaceutiska grundvetenskaper -- Neurovetenskaper (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Basic Medicine -- Neurosciences (hsv//eng)

Keyword

hyperpolarization-activated current
long-term potentiation
hippocampal theta-rhythm
voltage-clamp analysis
sino-atrial node
anomalous rectification
cation current
inward current
neocortical neurons
sinoatrial node

Publication and Content Type

ref (subject category)
for (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view