SwePub
Sök i LIBRIS databas

  Extended search

(db:Swepub) pers:(Jantsch Axel) mspu:(conferencepaper)
 

Search: (db:Swepub) pers:(Jantsch Axel) mspu:(conferencepaper) > (2015-2019) > Approximation Knob :

Approximation Knob : Power Capping Meets Energy Efficiency

Kanduri, Anil (author)
Haghbayan, Mohammad-Hashem (author)
Rahmani, Amir M. (author)
show more...
Liljeberg, Pasi (author)
Jantsch, Axel (author)
Dutt, Nikil (author)
Tenhunen, Hannu (author)
KTH,Industriell och Medicinsk Elektronik
show less...
 (creator_code:org_t)
2016-11-07
2016
English.
In: 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD). - New York, NY, USA : Institute of Electrical and Electronics Engineers (IEEE). - 9781450344661
  • Conference paper (peer-reviewed)
Abstract Subject headings
Close  
  • Power Capping techniques are used to restrict power consumption of computer systems to a thermally safe limit. Current many-core systems employ dynamic voltage and frequency scaling (DVFS), power gating (PG) and scheduling methods as actuators for power capping. These knobs are oriented towards power actuation, while the need for performance and energy savings are increasing in the dark silicon era. To address this, we propose approximation (APPX) as another knob for close-looped power management, lending performance and energy efficiency to existing power capping techniques. We use approximation in a pro-active way for long-term performance-energy objectives, complementing the short-term reactive power objectives. We implement an approximation-enabled power management framework, APPEND, that dynamically chooses an application with appropriate level of approximation from a set of variable accuracy implementations. Subject to the system dynamics, our power manager chooses an effective combination of knobs APPX, DVFS and PG, in a hierarchical way to ensure power capping with performance and energy gains. Our proposed approach yields 1.5x higher throughput, improved latency upto 5x, better performance per energy and dark silicon mitigation compared to state-of-the-art power management techniques over a set of applications ranging from high to no error resilience.

Subject headings

NATURVETENSKAP  -- Data- och informationsvetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences (hsv//eng)

Keyword

Dynamic Power Management
Power Capping
Approximate Computing

Publication and Content Type

ref (subject category)
kon (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view