SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Hallström Björn M)
 

Sökning: WFRF:(Hallström Björn M) > (2017) > Evolutionary engine...

Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments

Fletcher, Eugene, 1986 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Feizi, Amir, 1980 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Bisschops, Mark, 1985 (författare)
Chalmers tekniska högskola,Chalmers University of Technology,Kungliga Tekniska Högskolan (KTH),Royal Institute of Technology (KTH)
visa fler...
Hallström, Björn M. (författare)
KTH,Proteomik och nanobioteknologi,Science for Life Laboratory, SciLifeLab
Khoomrung, Sakda, 1978 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Siewers, Verena, 1976 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Nielsen, Jens (författare)
KTH,Genteknologi,Science for Life Laboratory, SciLifeLab,Chalmers University of Technology, Sweden,Chalmers tekniska högskola
visa färre...
 (creator_code:org_t)
Academic Press, 2017
2017
Engelska.
Ingår i: Metabolic engineering. - : Academic Press. - 1096-7176 .- 1096-7184. ; 39, s. 19-28
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Tolerance of yeast to acid stress is important for many industrial processes including organic acid production. Therefore, elucidating the molecular basis of long term adaptation to acidic environments will be beneficial for engineering production strains to thrive under such harsh conditions. Previous studies using gene expression analysis have suggested that both organic and inorganic acids display similar responses during short term exposure to acidic conditions. However, biological mechanisms that will lead to long term adaptation of yeast to acidic conditions remains unknown and whether these mechanisms will be similar for tolerance to both organic and inorganic acids is yet to be explored. We therefore evolved Saccharomyces cerevisiae to acquire tolerance to HCl (inorganic acid) and to 0.3 M L-lactic acid (organic acid) at pH 2.8 and then isolated several low pH tolerant strains. Whole genome sequencing and RNA-seq analysis of the evolved strains revealed different sets of genome alterations suggesting a divergence in adaptation to these two acids. An altered sterol composition and impaired iron uptake contributed to HCl tolerance whereas the formation of a multicellular morphology and rapid lactate degradation was crucial for tolerance to high concentrations of lactic acid. Our findings highlight the contribution of both the selection pressure and nature of the acid as a driver for directing the evolutionary path towards tolerance to low pH. The choice of carbon source was also an important factor in the evolutionary process since cells evolved on two different carbon sources (raffinose and glucose) generated a different set of mutations in response to the presence of lactic acid. Therefore, different strategies are required for a rational design of low pH tolerant strains depending on the acid of interest.

Ämnesord

NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Nyckelord

Adaptive laboratory evolution
Lactic acid
Low pH
Yeast
Biology
Gene expression
Genes
Inorganic acids
Organic acids
Plants (botany)
Biological mechanisms
Different carbon sources
Evolutionary engineering
Evolutionary process
Gene expression analysis
Organic acid productions
Whole genome sequencing

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy