SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Johansson K.M.)
 

Search: WFRF:(Johansson K.M.) > (2002-2004) > Development of hexa...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Johansson, E. M. (author)

Development of hexaaluminate catalysts for combustion of gasified biomass in gas turbines

  • Article/chapterEnglish2002

Publisher, publication year, extent ...

  • 2002-03-26
  • ASME International,2002
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-21508
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-21508URI
  • https://doi.org/10.1115/1.1335478DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • QC 20100525
  • There is an increasing interest in Catalytic combustors fuelled by low-heating value (LHV) gases, with a LHV of 5-7 MJ/Nm(3). This is because catalytic combustion could be advantageous compared to flame combustion with respect to stable combustion of LHV-gases and low conversions of fuel-N (mainly NH3) to NOX. In the present project, funded by the EU Joule Program, catalytic combustion of gasified wood for gas turbine applications is studied. A synthetic gas mixture of H-2, CO, CO2, H2O, CH4, N-2, and NH3, that resembles the output from a fluidized bed gasifier using biomass as raw material, is used. The gas mixture is mixed with air at atmospheric pressure and combusted over wash-coated cordierite monoliths in a bench-scale laboratory quartz-reactor. The objectives of the work described here are twofold. To begin with, improvement of the thermal stability of hexaaluminate washcoats by substitutions of rare earth or transition metal compounds is being studied. Secondly, catalytic combustion of gasified biomass over these washcoats has been studied in a bench-scale unit. In. this on-going project, obtained result show that it is possible to improve the surface area of hexaaluminate compounds up to 17 m(2)/g after careful synthesis and calcination up to 1400degreesC for four hours. The selectivity of NH3-conversion to N-2 is at present at 60 percent, but varies strongly with temperature. Fuel components such as H-2, CO, C2H4, and NH3 ignite at temperatures close to compressor outlet temperatures. This means that a pilot-flame may not be needed for ignition of the fuel. A comparison between a Pd-impregnated lanthanum hexaaluminate and a Mn-substituted lanthanum hexaaluminate showed that the ignition temperature and the NOX-formation varied strongly over the two different catalysts.

Added entries (persons, corporate bodies, meetings, titles ...)

  • Danielsson, K. M. J. (author)
  • Ersson, A. G. (author)
  • Järås, Sven G.KTH,Kemiteknik(Swepub:kth)u1ba24kl (author)
  • KTHKemiteknik (creator_code:org_t)

Related titles

  • In:Journal of engineering for gas turbines and power: ASME International124:2, s. 235-2380742-47951528-8919

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view