SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Östrom Henrik)
 

Sökning: WFRF:(Östrom Henrik) > Naphthalene on Ni(1...

Naphthalene on Ni(111) : Experimental and Theoretical Insights into Adsorption, Dehydrogenation, and Carbon Passivation

Ghadami Yazdi, M. (författare)
Moud, Pouya H. (författare)
KTH,Kemiteknik
Marks, Kess (författare)
Stockholms universitet,Fysikum
visa fler...
Piskorz, W. (författare)
Östrom, Henrik (författare)
Stockholms universitet,Fysikum
Hansson, Tony (författare)
Stockholms universitet,Fysikum
Kotarba, A. (författare)
Engvall, Klas (författare)
KTH,Kemiteknik
Göthelid, M. (författare)
visa färre...
 (creator_code:org_t)
2017-09-28
2017
Engelska.
Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 121:40, s. 22199-22207
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • An attractive solution to mitigate tars and also to decompose lighter hydrocarbons in biomass gasification is secondary catalytic reforming, converting hydrocarbons to useful permanent gases. Albeit that it has been in use for a long time in fossil feedstock catalytic steam reforming, understanding of the catalytic processes is still limited. Naphthalene is typically present in the biomass gasification gas and to further understand the elementary steps of naphthalene transformation, we investigated the temperature dependent naphthalene adsorption, dehydrogenation and passivation on Ni(111). TPD (temperature-programmed desorption) and STM (scanning tunneling microscopy) in ultrahigh vacuum environment from 110 K up to 780 K, combined with DFT (density functional theory) were used in the study. Room temperature adsorption results in a flat naphthalene monolayer. DFT favors the dibridge[7] geometry but the potential energy surface is rather smooth and other adsorption geometries may coexist. DFT also reveals a pronounced dearomatization and charge transfer from the adsorbed molecule into the nickel surface. Dehydrogenation occurs in two steps, with two desorption peaks at approximately 450 and 600 K. The first step is due to partial dehydrogenation generating active hydrocarbon species that at higher temperatures migrates over the surface forming graphene. The graphene formation is accompanied by desorption of hydrogen in the high temperature TPD peak. The formation of graphene effectively passivates the surface both for hydrogen adsorption and naphthalene dissociation. In conclusion, the obtained results on the model naphthalene and Ni(111) system, provides insight into elementary steps of naphthalene adsorption, dehydrogenation, and carbon passivation, which may serve as a good starting point for rational design, development and optimization of the Ni catalyst surface, as well as process conditions, for the aromatic hydrocarbon reforming process.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Kemiteknik -- Kemiska processer (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering -- Chemical Process Engineering (hsv//eng)
NATURVETENSKAP  -- Fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences (hsv//eng)

Nyckelord

Adsorption
Aromatic hydrocarbons
Catalytic reforming
Charge transfer
Dehydrogenation
Density functional theory
Design for testability
Desorption
Gas adsorption
Gasification
Graphene
Hydrocarbons
Nickel
Passivation
Potential energy
Quantum chemistry
Scanning tunneling microscopy
Steam reforming
Temperature programmed desorption
Adsorption geometries
Attractive solutions
Catalytic steam reforming
Desorption of hydrogen
Hydrocarbon reforming
Naphthalene adsorption
Naphthalene transformation
Temperature dependent
Naphthalene
kemisk fysik

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy