SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:kth-227413"
 

Search: id:"swepub:oai:DiVA.org:kth-227413" > Deformation strain ...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Ramani-Mohan, R. -K (author)

Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation

  • Article/chapterEnglish2018

Publisher, publication year, extent ...

  • 2017-11-10
  • John Wiley and Sons Ltd,2018
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-227413
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-227413URI
  • https://doi.org/10.1002/term.2565DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Export Date: 9 May 2018; Article; Correspondence Address: Hansmann, J.; Translational Center Würzburg “Regenerative Therapies for Oncology and Musculosceletal Diseases”, Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGBGermany; email: jan.hansmann@uni-wuerzburg.de; Funding details: 242175, FP7, Seventh Framework Programme; Funding details: 13N12971— ETface, MOHESR, Ministry of Higher Education and Scientific Research; Funding text: Our work was funded by the German Federal Ministry of Education and Research, program NanoMatFutur, grant agreement 13N12971— ETface, and the European Union's Seventh Framework Program, grant agreement 242175—Vascubone. Furthermore, we thank Moustapha Kassem for providing the TERT cells. The authors woud also like to thank Ernst‐Ulrich Berndt for performing µ‐CT imaging on the scaffold. QC 20180530
  • Mesenchymal stem cells play a major role during bone remodelling and are thus of high interest for tissue engineering and regenerative medicine applications. Mechanical stimuli, that is, deformation strain and interstitial fluid-flow-induced shear stress, promote osteogenic lineage commitment. However, the predominant physical stimulus that drives early osteogenic cell maturation is not clearly identified. The evaluation of each stimulus is challenging, as deformation and fluid-flow-induced shear stress interdepend. In this study, we developed a bioreactor that was used to culture mesenchymal stem cells harbouring a strain-responsive AP-1 luciferase reporter construct, on porous scaffolds. In addition to the reporter, mineralization and vitality of the cells was investigated by alizarin red staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Quantification of the expression of genes associated to bone regeneration and bone remodelling was used to confirm alizarin red measurements. Controlled perfusion and deformation of the 3-dimensional scaffold facilitated the alteration of the expression of osteogenic markers, luciferase activity, and calcification. To isolate the specific impact of scaffold deformation, a computational model was developed to derive a perfusion flow profile that results in dynamic shear stress conditions present in periodically loaded scaffolds. In comparison to actually deformed scaffolds, a lower expression of all measured readout parameters indicated that deformation strain is the predominant stimulus for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation. 

Subject headings and genre

  • NATURVETENSKAP Kemi hsv//swe
  • NATURAL SCIENCES Chemical Sciences hsv//eng
  • bioreactor
  • computational fluid dynamics
  • mechanical strain
  • mechanosensitive reporter gene constructs
  • mesenchymal stem cells
  • osteogenesis
  • 3 (4
  • 5 dimethyl 2 thiazolyl) 2
  • 5 diphenyltetrazolium bromide
  • alizarin red s
  • alkaline phosphatase
  • bone morphogenetic protein 2
  • collagen type 1
  • osteocalcin
  • osteonectin
  • osteopontin
  • transcription factor AP 1
  • transcription factor RUNX2
  • Article
  • bone deformation
  • bone development
  • bone mineralization
  • bone regeneration
  • bone remodeling
  • bone stress
  • cell culture
  • cell differentiation
  • cell lineage
  • cell maturation
  • controlled study
  • enzyme activity
  • gene expression
  • human
  • human cell
  • luciferase assay
  • mathematical model
  • mesenchymal stem cell
  • osteoblast
  • porosity
  • priority journal
  • quantitative analysis
  • shear stress
  • stem cell
  • stress
  • three dimensional imaging

Added entries (persons, corporate bodies, meetings, titles ...)

  • Schwedhelm, I. (author)
  • Wistrand, Anna Finne,1976-KTH,Fiber- och polymerteknologi(Swepub:kth)u17gwfv7 (author)
  • Krug, M. (author)
  • Schwarz, T. (author)
  • Jakob, F. (author)
  • Walles, H. (author)
  • Hansmann, J. (author)
  • KTHFiber- och polymerteknologi (creator_code:org_t)

Related titles

  • In:Journal of Tissue Engineering and Regenerative Medicine: John Wiley and Sons Ltd12:3, s. e1474-e14791932-62541932-7005

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view