SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Sander Ingo)
 

Sökning: WFRF:(Sander Ingo) > (2015-2019) > Constraint-Based Re...

Constraint-Based Register Allocation and Instruction Scheduling

Castañeda Lozano, Roberto, 1986- (författare)
KTH,Programvaruteknik och datorsystem, SCS,RISE SICS (Swedish Institute of Computer Science)
Schulte, Christian, Professor, 1967- (preses)
KTH,Programvaruteknik och datorsystem, SCS
Sander, Ingo, Professor, 1964- (preses)
KTH,Elektronik och inbyggda system,Elektroniksystemkonstruktion,KTH Syd,Mikroelektronik och informationsteknik, IMIT
visa fler...
Carlsson, Mats, Docent (preses)
RISE SICS (Swedish Institute of Computer Science)
Michel, Laurent, Professor (opponent)
University of Connecticut
visa färre...
 (creator_code:org_t)
ISBN 9789177298533
Stockholm : KTH Royal Institute of Technology, 2018
Engelska 60 s.
Serie: TRITA-EECS-AVL ; 2018:48
Serie: SICS Dissertation Series, 1101-1335 ; 78
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to improve latency or throughput) are central compiler problems. This dissertation proposes a combinatorial optimization approach to these problems that delivers optimal solutions according to a model, captures trade-offs between conflicting decisions, accommodates processor-specific features, and handles different optimization criteria.The use of constraint programming and a novel program representation enables a compact model of register allocation and instruction scheduling. The model captures the complete set of global register allocation subproblems (spilling, assignment, live range splitting, coalescing, load-store optimization, multi-allocation, register packing, and rematerialization) as well as additional subproblems that handle processor-specific features beyond the usual scope of conventional compilers.The approach is implemented in Unison, an open-source tool used in industry and research that complements the state-of-the-art LLVM compiler. Unison applies general and problem-specific constraint solving methods to scale to medium-sized functions, solving functions of up to 647 instructions optimally and improving functions of up to 874 instructions. The approach is evaluated experimentally using different processors (Hexagon, ARM and MIPS), benchmark suites (MediaBench and SPEC CPU2006), and optimization criteria (speed and code size reduction). The results show that Unison generates code of slightly to significantly better quality than LLVM, depending on the characteristics of the targeted processor (1% to 9.3% mean estimated speedup; 0.8% to 3.9% mean code size reduction). Additional experiments for Hexagon show that its estimated speedup has a strong monotonic relationship to the actual execution speedup, resulting in a mean speedup of 5.4% across MediaBench applications.The approach contributed by this dissertation is the first of its kind that is practical (it captures the complete set of subproblems, scales to medium-sized functions, and generates executable code) and effective (it generates better code than the LLVM compiler, fulfilling the promise of combinatorial optimization). It can be applied to trade compilation time for code quality beyond the usual optimization levels, explore and exploit processor-specific features, and identify improvement opportunities in conventional compilers.
  • Registerallokering (tilldelning av programvariabler till processorregister eller minne) och instruktionsschemaläggning (omordning av instruktioner för att förbättra latens eller genomströmning) är centrala kompilatorproblem. Denna avhandling presenterar en kombinatorisk optimeringsmetod för dessa problem. Metoden, som är baserad på en formell modell, är kraftfull nog att ge optimala lösningar och göra avvägningar mellan motstridiga optimeringsval. Den kan till fullo uttnyttja processorspecifika funktioner och uttrycka olika optimeringsmål.Användningen av villkorsprogrammering och en ny programrepresentation möjliggör en kompakt modell av registerallokering och instruktionsschemaläggning. Modellen omfattar samtliga delproblem som ingår i global registerallokering: spilling, tilldelning, live range splitting, coalescing, load-store-optimering, flertilldelning, registerpackning och rematerialisering. Förutom dessa, kan den också integrera processorspecifika egenskaper som går utanför vad konventionella kompilatorer hanterar.Metoden implementeras i Unison, ett öppen-källkods-verktyg som används inom industri- och forskningsvärlden och utgör ett komplement till LLVM-kompilatorn. Unison tillämpar allmänna och problemspecifika villkorslösningstekniker för att skala till medelstora funktioner, lösa funktioner med upp till 647 instruktioner optimalt och förbättra funktioner på upp till 874 instruktioner. Metoden utvärderas experimentellt för olika målprocessorer (Hexagon, ARM och MIPS), benchmark-sviter (MediaBench och SPEC CPU2006) och optimeringsmål (hastighet och kodstorlek). Resultaten visar att Unison genererar kod av något till betydligt bättre kvalitet än LLVM. Den uppskattade hastighetsförbättringen varierar mellan 1% till 9.3% och kodstorleksreduktionen mellan 0.8% till~3.9%, beroende på målprocessor. Ytterligare experiment för Hexagon visar att dess uppskattade hastighetsförbättring har ett starkt monotoniskt förhållande till den faktiska exekveringstiden, vilket resulterar i en 5.4% genomsnittlig hastighetsförbättring för MediaBench-applikationer.Denna avhandling beskriver den första praktiskt användbara kombinatoriska optimeringsmetoden för integrerad registerallokering och instruktionsschemaläggning. Metoden är praktiskt användbar då den hanterar samtliga ingående delproblem, genererar exekverbar maskinkod och skalar till medelstora funktioner. Den är också effektiv då den genererar bättre maskinkod än LLVM-kompilatorn. Metoden kan tillämpas för att byta kompileringstid mot kodkvalitet utöver de vanliga optimeringsnivåerna, utforska och utnyttja processorspecifika egenskaper samt identifiera förbättringsmöjligheter i konventionella kompilatorer.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Datorsystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Computer Systems (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Nyckelord

constraint programming
combinatorial optimization
register allocation
instruction scheduling
compiler construction
Informations- och kommunikationsteknik
Information and Communication Technology

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy