SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:kth-232293"
 

Search: id:"swepub:oai:DiVA.org:kth-232293" > Wi-Fi Evolution for...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Voicu, Andra M.Rhein Westfal TH Aachen, Inst Networked Syst, Kackertstr 9, D-52072 Aachen, Germany. (author)

Wi-Fi Evolution for Future Dense Networks : Does Sensing Threshold Adaptation Help?

  • Article/chapterEnglish2018

Publisher, publication year, extent ...

  • IEEE,2018
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-232293
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232293URI
  • https://doi.org/10.1109/WCNC.2018.8377243DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:kon swepub-publicationtype

Notes

  • QC 20180719
  • Emerging Wi-Fi technologies are expected to cope with large amounts of traffic in dense networks. Consequently, proposals for the future IEEE 802.11ax Wi-Fi amendment include sensing threshold and transmit power adaptation, in order to improve spatial reuse. However, it is not yet understood to which extent such adaptive approaches - and which variant - would achieve a better balance between spatial reuse and the level of interference, in order to improve the network performance. Moreover, it is not clear how legacy Wi-Fi devices would be affected by new-generation Wi-Fi implementing these adaptive design parameters. In this paper we present a thorough comparative study in ns-3 for four major proposed adaptation algorithms and we compare their performance against legacy non-adaptive Wi-Fi. Additionally, we consider mixed populations where both legacy non-adaptive and new-generation adaptive populations coexist. We assume a dense indoor residential deployment and different numbers of available channels in the 5 Wiz band, relevant for future IEEE 802.11ax. Our results show that for the dense scenarios considered, the algorithms do not significantly improve the overall network performance compared to the legacy baseline, as they increase the throughput of some nodes, while decreasing the throughput of others. For mixed populations in dense deployments, adaptation algorithms that improve the performance of new-generation nodes degrade the performance of legacy nodes and vice versa. This suggests that to support Wi-Fi evolution for dense deployments and consistently increase the throughput throughout the network, more sophisticated algorithms are needed, e.g. considering combinations of input parameters in current variants.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Giorgi, FedericoRhein Westfal TH Aachen, Inst Networked Syst, Kackertstr 9, D-52072 Aachen, Germany. (author)
  • Simic, LjiljanaRhein Westfal TH Aachen, Inst Networked Syst, Kackertstr 9, D-52072 Aachen, Germany. (author)
  • Petrova, MarinaKTH,Radio Systems Laboratory (RS Lab)(Swepub:kth)u1jy6jqe (author)
  • Rhein Westfal TH Aachen, Inst Networked Syst, Kackertstr 9, D-52072 Aachen, Germany.Radio Systems Laboratory (RS Lab) (creator_code:org_t)

Related titles

  • In:2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC): IEEE9781538617342

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Voicu, Andra M.
Giorgi, Federico
Simic, Ljiljana
Petrova, Marina
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Electrical Engin ...
and Telecommunicatio ...
Articles in the publication
2018 IEEE WIRELE ...
By the university
Royal Institute of Technology

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view