SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Rolland Nicolas)
 

Sökning: WFRF:(Rolland Nicolas) > (2018) > Understanding morph...

Understanding morphology-mobility dependence in PEDOT:Tos

Rolland, Nicolas (författare)
Linköpings universitet,Institutionen för teknik och naturvetenskap,Tekniska fakulteten
Franco Gonzalez, Juan Felipe (författare)
Linköpings universitet,Fysik och elektroteknik,Tekniska fakulteten
Volpi, Riccardo (författare)
Linköpings universitet,Bioinformatik,Tekniska fakulteten,RIST, Romania
visa fler...
Linares, Mathieu (författare)
KTH,Teoretisk kemi och biologi,SeRC - Swedish e-Science Research Centre,KTH Royal Inst Technol, Sweden
Zozoulenko, Igor (författare)
Linköpings universitet,Fysik och elektroteknik,Tekniska fakulteten
visa färre...
 (creator_code:org_t)
American Physical Society, 2018
2018
Engelska.
Ingår i: Physical Review Materials. - : American Physical Society. - 2475-9953. ; 2:4
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The potential of conjugated polymers to compete with inorganic materials in the field of semiconductor is conditional on fine-tuning of the charge carriers mobility. The latter is closely related to the material morphology, and various studies have shown that the bottleneck for charge transport is the connectivity between well-ordered crystallites, with a high degree of pi-pi stacking, dispersed into a disordered matrix. However, at this time there is a lack of theoretical descriptions accounting for this link between morphology and mobility, hindering the development of systematic material designs. Here we propose a computational model to predict charge carriers mobility in conducting polymer PEDOT depending on the physicochemical properties of the system. We start by calculating the morphology using molecular dynamics simulations. Based on the calculated morphology we perform quantum mechanical calculation of the transfer integrals between states in polymer chains and calculate corresponding hopping rates using the Miller-Abrahams formalism. We then construct a transport resistive network, calculate the mobility using a mean-field approach, and analyze the calculated mobility in terms of transfer integrals distributions and percolation thresholds. Our results provide theoretical support for the recent study [Noriega et al., Nat Mater 12, 1038 (2013)] explaining why the mobility in polymers rapidly increases as the chain length is increased and then saturates for sufficiently long chains. Our study also provides the answer to the long-standing question whether the enhancement of the crystallinity is the key to designing high-mobility polymers. We demonstrate, that it is the effective pi-pi stacking, not the long-range order that is essential for the material design for the enhanced electrical performance. This generic model can compare the mobility of a polymer thin film with different solvent contents, solvent additives, dopant species or polymer characteristics, providing a general framework to design new high mobility conjugated polymer materials.

Ämnesord

NATURVETENSKAP  -- Kemi -- Polymerkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Polymer Chemistry (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy