SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Lindström Annika)
 

Sökning: WFRF:(Lindström Annika) > Electrochemical pro...

Electrochemical properties of alternative polymer electrolytes in fuel cells

Carlson, Annika (författare)
KTH,Tillämpad elektrokemi
Lindström, Rakel, Universitetslektor, 1973- (preses)
KTH,Tillämpad elektrokemi
Lindbergh, Göran, Professor, 1959- (preses)
KTH,Kemiteknik,Tillämpad elektrokemi
visa fler...
Lagergren, Carina, Professor, 1964- (preses)
KTH,Kemiteknik,Tillämpad elektrokemi
Mamlouk, Mohamed, Senior lecturer (opponent)
Newcastle University
visa färre...
 (creator_code:org_t)
ISBN 9789178733651
Stockholm : KTH Royal Institute of Technology, 2019
Engelska 59 s.
Serie: TRITA-CBH-FOU ; 2019:64
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Fuel cells, using hydrogen as energy carrier, allow chemically‑stored energy to be utilized for many applications, including balancing the electrical grid and the propulsion of vehicles. To make the fuel cell technology more accessible and promote a sustainable energy society, this thesis focuses on alternative polymer electrolytes, as they can potentially lead to a lower cost and a more environmentally‑friendly fuel cell. The main subject is anion exchange membrane fuel cells (AEMFCs), for which the importance of gas diffusion electrode morphology and platinum electrode reactions are investigated. Properties of the membrane such as water flux during operation are evaluated. Furthermore, novel polymer electrolytes are studied: variations of poly(phenylene oxide)‑based membranes in AEMFCs; and cellulose‑based membranes in a proton exchange membrane fuel cell (PEMFC). The AEMFC results show that the performance is dependent on the electrode morphology. Electrochemical experiments in a hydrogen/hydrogen cell combined with modelling show that the hydrogen oxidation reaction proceeds through the Tafel‑Volmer reaction pathway on platinum. Application of the model in a hydrogen/oxygen cell shows that the cathode has the slowest reaction rate. During operation, the water flux through the membrane is directed from the anode where water is produced to the cathode where it is consumed. This leads to an increase in water content at both electrodes, which implies that electrode flooding is more likely than dry‑out during operation. The effect of membrane thickness on water flux is shown to be larger than the effect of polymer structure for several different types of poly(phenylene oxide)‑based membranes. The comparison of these polymers also indicates that a high conductivity, for the relative humidity achieved in a fuel cell, promotes increased performance. Finally, the study of cellulose-based membranes in a PEMFC shows that cellulose as a renewable, natural polymer has promising properties, such as stable conductivity for relative humidities above 65 % and a low gas permeability.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Kemiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering (hsv//eng)

Nyckelord

fuel cell
anion exchange membrane
proton exchange membrane
electrode morphology
hydrogen oxidation reaction
water transport
poly(phenylene oxide)
cellulose
bränslecell
anjonledande membran
protonledande membran
elektrodstruktur
vätgasoxidation
vattentransport
poly(fenylenoxid)
cellulosa
Chemical Engineering
Kemiteknik

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Carlson, Annika
Lindström, Rakel ...
Lindbergh, Göran ...
Lagergren, Carin ...
Mamlouk, Mohamed ...
Om ämnet
TEKNIK OCH TEKNOLOGIER
TEKNIK OCH TEKNO ...
och Kemiteknik
Delar i serien
Av lärosätet
Kungliga Tekniska Högskolan

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy