SwePub
Sök i LIBRIS databas

  Extended search

(WFRF:(Bauer Michael)) lar1:(kth)
 

Search: (WFRF:(Bauer Michael)) lar1:(kth) > (2020-2023) > Anderson transition...

Anderson transition in stoichiometric Fe2VAl : high thermoelectric performance from impurity bands

Garmroudi, Fabian (author)
TU Wien, Inst Solid State Phys, Vienna, Austria.
Parzer, Michael (author)
TU Wien, Inst Solid State Phys, Vienna, Austria.
Riss, Alexander (author)
TU Wien, Inst Solid State Phys, Vienna, Austria.
show more...
Ruban, Andrei V. (author)
KTH,Strukturer,Mat Ctr Leoben Forsch GmbH, Leoben, Austria.
Khmelevskyi, Sergii (author)
TU Wien, Ctr Computat Mat Sci & Engn, Vienna, Austria.
Reticcioli, Michele (author)
Univ Wien, Ctr Computat Mat Sci, Fac Phys, Vienna, Austria.
Knopf, Matthias (author)
TU Wien, Inst Solid State Phys, Vienna, Austria.
Michor, Herwig (author)
TU Wien, Inst Solid State Phys, Vienna, Austria.
Pustogow, Andrej (author)
TU Wien, Inst Solid State Phys, Vienna, Austria.
Mori, Takao (author)
Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, WPI MANA, Tsukuba, Ibaraki, Japan.;Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki, Japan.
Bauer, Ernst (author)
TU Wien, Inst Solid State Phys, Vienna, Austria.
show less...
TU Wien, Inst Solid State Phys, Vienna, Austria Strukturer (creator_code:org_t)
2022-06-23
2022
English.
In: Nature Communications. - : Springer Nature. - 2041-1723. ; 13:1
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • The mathematical conditions for the best thermoelectric is well known but never realised in real materials. Here, the authors propose the Anderson transition in a narrow impurity band as a physical realisation of this seemingly unrealisable scenario. Discovered more than 200 years ago in 1821, thermoelectricity is nowadays of global interest as it enables direct interconversion of thermal and electrical energy via the Seebeck/Peltier effect. In their seminal work, Mahan and Sofo mathematically derived the conditions for 'the best thermoelectric'-a delta-distribution-shaped electronic transport function, where charge carriers contribute to transport only in an infinitely narrow energy interval. So far, however, only approximations to this concept were expected to exist in nature. Here, we propose the Anderson transition in a narrow impurity band as a physical realisation of this seemingly unrealisable scenario. An innovative approach of continuous disorder tuning allows us to drive the Anderson transition within a single sample: variable amounts of antisite defects are introduced in a controlled fashion by thermal quenching from high temperatures. Consequently, we obtain a significant enhancement and dramatic change of the thermoelectric properties from p-type to n-type in stoichiometric Fe2VAl, which we assign to a narrow region of delocalised electrons in the energy spectrum near the Fermi energy. Based on our electronic transport and magnetisation experiments, supported by Monte-Carlo and density functional theory calculations, we present a novel strategy to enhance the performance of thermoelectric materials.

Subject headings

NATURVETENSKAP  -- Fysik -- Den kondenserade materiens fysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Condensed Matter Physics (hsv//eng)

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view