SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Höglund Lars Professor)
 

Sökning: WFRF:(Höglund Lars Professor) > ICME guided study o...

ICME guided study of mass transport in production and application of cemented carbides

Salmasi, Armin, 1983- (författare)
KTH,Strukturer
Larsson, Henrik, Docent (preses)
KTH,Strukturer
Höglund, Lars, Docent (preses)
KTH,Strukturer
visa fler...
Blomqvist, Andreas (preses)
KTH,Materialvetenskap
Odqvist, Joakim, Professor (preses)
KTH,Strukturer
Ågren, John, Professor (preses)
KTH,Strukturer
Garcia, José, Docent (opponent)
Sandvik Coromant AB
visa färre...
 (creator_code:org_t)
ISBN 9789180403924
Stockholm, Sweden : KTH Royal Institute of Technology, 2022
Engelska 55 s.
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • Cemented carbides are metallic composites consisting of a WC hard phase and a ductile binder, usually Co-based, produced by powder metallurgy and sintering. Cemented carbides are an essential part of modern material and manufacturing processes. However, Co powder is classified as a carcinogenic material with serious health hazards, and most virgin Co reservoirs are located in conflict regions. In addition, there are monopolies in the market for pure tungsten. Therefore, reducing the consumption of cobalt or replacing it with other non-hazardous elements would increase the sustainability of cemented carbide production. Furthermore, advances in production technology can help overcome raw material limitations. One such advancement is non-homogeneous structures and properties for optimization of microstructure which is the topic of this thesis. Integrated computational materials engineering (ICME) and its complementary tools, calculation of phase diagram (CALPHAD), and ab-initio modeling are strong tools that bridge experimentation and modeling. In this thesis, a framework for the material design of non-homogeneous cemented carbides is proposed and tested using these computational tools. The workflow of the material design of non-homogeneous microstructure and properties were studied on different length scales. Atomistic modeling with density functional theory (DFT), ab-initio molecular dynamics (AIMD), and generalized hydrodynamics (GHD) were used to model the viscosity of liquid Co binder. In addition, the mobility of Ti and Fe in disordered BCC TiFe alloy was assessed using new experimental data from the diffusion couple experiments and an electron probe micro-analyzer (EPMA). These two studies were conducted to complete the data necessary to study cemented carbides’ processing and performance. The other studied phenomenon studied by experimentation and modeling is the formation of the gradient zone and the γ cone structure. In addition, a phenomenological model for liquid phase migration (LPM) was created and implemented using the homogenization approach. The LPM pro- cess was studied experimentally and modeled with the YAPFI software. A study of these performers was necessary to link processing and microstructure. On the performance side, the chemical interaction between cutting tools and Ti alloys was studied in detail through experimentation and modeling of diffusion. In addition, hardness and toughness models were applied to predict the longevity of studied cemented carbides. Finally, by applying ICME and material design, a high entropy alloy (HEA) alternative to Co binder was designed, produced, and tested. The research presented in this dissertation attempts to fill the gaps in the material design workflow of cemented carbides by developing new tools and methods based on ICME and CALPHAD paradigms. This goal is achieved by studying different length scales, processing methods, microstructure, properties, and performance of cemented carbides. 
  • Hårdmetaller är metalliska kompositer som består av en hård fas, oftast WC, och ett segt bindemedel, vanligtvis Co-baserat, framställt genom pulvermetal- lurgi och sintring. Hårdmetaller är en väsentlig del av de flesta produktions- processer. Emellertid är Co-pulver klassificerat som ett cancerframkallande material med allvarliga hälsorisker, och de flesta jungfruliga Co-reservoarer finns i konfliktområden. Dessutom finns det monopol på marknaden för ren volfram. Därför skulle en minskning av förbrukningen av kobolt eller att ersät- ta den med andra ofarliga ämnen öka hållbarheten i produktionen av hårdme- tall. Dessutom kan framsteg inom produktionsteknik hjälpa till att övervin- na råvarubegränsningar. Ett sådant framsteg är “icke-homogena” strukturer och beräkiningsverktyg för optimering av produktmikrostruktur som är äm- net för denna avhandling. “Integrated Computational Materials Engineering (ICME)” och dess komplementärar verktyg, beräkning av fasdiagram (CALP- HAD) och ab-initio modellering, är verktyg som överbryggar experiment och modellering. Med hjälp av dessa verktyg föreslås och testas ett ramverk för materialdesign av icke-homogena hårdmetaller i denna avhandling.Arbetsflödet för materialdesign av icke-homogen mikrostruktur och egen- skaper studerades påolika längdskalor. Atomistisk modellering med densitets- funktionsteori (DFT), ab-initio molekylär dynamik (AIMD) och generaliserad hydrodynamik (GHD) användes för att modellera viskositeten hos flytande Co-bindemedel. Rörligheten för Ti och Fe i oordnad BCC TiFe utvärderades med hjälp av nya experimentella data som samlats in från diffusionsparexpe- rimentet och EPMA-analys. Dessa två studier syftade till att komplettera de data som är nödvändiga för att studera hårdmetalls bearbetning och prestan- da. Bildandet av gradientzonen och γ-konstrukturen modellerades och utvär- derades experimentellt. En fenomenologisk modell för flytande fasmigrering (“ Liquid Phase Migration”, LPM) skapades och implementerades med hjälp av homogeniseringsmetoden. LPM-processen studerades experimentellt och mo- dellerades med YAPFI-mjukvaran. En studie av dessa processer var nödvän- dig för att koppla samman bearbetning och mikrostruktur. På prestandasidan studerades kemisk interaktion mellan skärverktyg och Ti-legeringar i detalj genom experiment och diffusionsmodellering. Dessutom användes hårdhets- och seghetsmodeller för att förutsäga hårdmetallers prestanda. Slutligen, med tillämpning av ICME och materialdesign, designades, producerades och tes- tades ett alternativt bindemedel med bestående av högentropilegering. ICME och CALPHAD genomsyrade hela forskningsprojekted. Studierna på olika längdskalor hjälpte till att bättre förstå bearbetning, mikrostruktur, egenska- per och prestanda hos hårdmetaller. Dessutom har nya verktyg och metoder utvecklats för att fylla luckorna i materialdesignens arbetsflöde för hårdme- taller.Hårdmetaller är metalliska kompositer som består av en hård fas, oftast WC, och ett segt bindemedel, vanligtvis Co-baserat, framställt genom pulvermetal- lurgi och sintring. Hårdmetaller är en väsentlig del av de flesta produktions- processer. Emellertid är Co-pulver klassificerat som ett cancerframkallande material med allvarliga hälsorisker, och de flesta jungfruliga Co-reservoarer finns i konfliktområden. Dessutom finns det monopol på marknaden för ren volfram. Därför skulle en minskning av förbrukningen av kobolt eller att ersät- ta den med andra ofarliga ämnen öka hållbarheten i produktionen av hårdme- tall. Dessutom kan framsteg inom produktionsteknik hjälpa till att övervin- na råvarubegränsningar. Ett sådant framsteg är “icke-homogena” strukturer och beräkiningsverktyg för optimering av produktmikrostruktur som är äm- net för denna avhandling. “Integrated Computational Materials Engineering (ICME)” och dess komplementärar verktyg, beräkning av fasdiagram (CALP- HAD) och ab-initio modellering, är verktyg som överbryggar experiment och modellering. Med hjälp av dessa verktyg föreslås och testas ett ramverk för materialdesign av icke-homogena hårdmetaller i denna avhandling.Arbetsflödet för materialdesign av icke-homogen mikrostruktur och egen- skaper studerades påolika längdskalor. Atomistisk modellering med densitets- funktionsteori (DFT), ab-initio molekylär dynamik (AIMD) och generaliserad hydrodynamik (GHD) användes för att modellera viskositeten hos flytande Co-bindemedel. Rörligheten för Ti och Fe i oordnad BCC TiFe utvärderades med hjälp av nya experimentella data som samlats in från diffusionsparexpe- rimentet och EPMA-analys. Dessa två studier syftade till att komplettera de data som är nödvändiga för att studera hårdmetalls bearbetning och prestan- da. Bildandet av gradientzonen och γ-konstrukturen modellerades och utvär- derades experimentellt. En fenomenologisk modell för flytande fasmigrering (“ Liquid Phase Migration”, LPM) skapades och implementerades med hjälp av homogeniseringsmetoden. LPM-processen studerades experimentellt och mo- dellerades med YAPFI-mjukvaran. En studie av dessa processer var nödvän- dig för att koppla samman bearbetning och mikrostruktur. På prestandasidan studerades kemisk interaktion mellan skärverktyg och Ti-legeringar i detalj genom experiment och diffusionsmodellering. Dessutom användes hårdhets- och seghetsmodeller för att förutsäga hårdmetallers prestanda. Slutligen, med tillämpning av ICME och materialdesign, designades, producerades och tes- tades ett alternativt bindemedel med bestående av högentropilegering. ICME och CALPHAD genomsyrade hela forskningsprojekted. Studierna på olika längdskalor hjälpte till att bättre förstå bearbetning, mikrostruktur, egenska- per och prestanda hos hårdmetaller. Dessutom har nya verktyg och metoder utvecklats för att fylla luckorna i materialdesignens arbetsflöde för hårdme- taller.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Metallurgi och metalliska material (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Metallurgy and Metallic Materials (hsv//eng)

Nyckelord

cemented carbides
non-homogeneous structures
liquid phase migration
ICME
CALPHAD
materials design
viscosity
diffusion
mass transport
thermodynamics
kinetics
ab-initio
Materials Science and Engineering
Teknisk materialvetenskap

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy