SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Eivazi Hamidreza)
 

Sökning: WFRF:(Eivazi Hamidreza) > Enhancement of PIV ...

Enhancement of PIV measurements via physics-informed neural networks

Hasanuzzaman, Gazi (författare)
Brandenburg Tech Univ Cottbus, Dept Aerodynam & Fluid Mech, Senftenberg, Germany.
Eivazi, Hamidreza (författare)
KTH,Linné Flow Center, FLOW,Teknisk mekanik
Merbold, Sebastian (författare)
Brandenburg Tech Univ Cottbus, Dept Aerodynam & Fluid Mech, Senftenberg, Germany.
visa fler...
Egbers, Christoph (författare)
Brandenburg Tech Univ Cottbus, Dept Aerodynam & Fluid Mech, Senftenberg, Germany.
Vinuesa, Ricardo (författare)
KTH,Linné Flow Center, FLOW,Strömningsmekanik och Teknisk Akustik
visa färre...
Brandenburg Tech Univ Cottbus, Dept Aerodynam & Fluid Mech, Senftenberg, Germany Linné Flow Center, FLOW (creator_code:org_t)
2023-01-03
2023
Engelska.
Ingår i: Measurement science and technology. - : IOP Publishing. - 0957-0233 .- 1361-6501. ; 34:4
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Physics-informed neural networks (PINN) are machine-learning methods that have been proved to be very successful and effective for solving governing equations of fluid flow. In this work we develop a robust and efficient model within this framework and apply it to a series of two-dimensional three-component stereo particle-image velocimetry (PIV) datasets, to reconstruct the mean velocity field and correct measurements errors in the data. Within this framework, the PINNs-based model solves the Reynolds-averaged-Navier-Stokes equations for zero-pressure-gradient turbulent boundary layer (ZPGTBL) without a prior assumption and only taking the data at the PIV domain boundaries. The turbulent boundary layer (TBL) data has different flow conditions upstream of the measurement location due to the effect of an applied flow control via uniform blowing. The developed PINN model is very robust, adaptable and independent of the upstream flow conditions due to different rates of wall-normal blowing while predicting the mean velocity quantities simultaneously. Hence, this approach enables improving the mean-flow quantities by reducing errors in the PIV data. For comparison, a similar analysis has been applied to numerical data obtained from a spatially-developing ZPGTBL and an adverse-pressure-gradient TBL over a NACA4412 airfoil geometry. The PINNs-predicted results have less than 1% error in the streamwise velocity and are in excellent agreement with the reference data. This shows that PINNs has potential applicability to shear-driven turbulent flows with different flow histories, which includes experiments and numerical simulations for predicting high-fidelity data.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Nyckelord

deep learning
physics-informed neural networks
particle image velocimetry
turbulence
flow control

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy