SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Finne Wistrand Anna 1976 )
 

Sökning: WFRF:(Finne Wistrand Anna 1976 ) > Hybrid material bas...

Hybrid material based on hyaluronan hydrogels and poly(L-lactide-co-1,3-trimethylene carbonate) scaffolds toward a cell-instructive microenvironment with long-term in vivo degradability

Kivijärvi, Tove (författare)
KTH,Fiber- och polymerteknologi
Goksøyr, Øyvind (författare)
Univ Bergen, Dept Clin Dent, Ctr Translat Oral Res TOR, Bergen, Norway; Haukeland Hosp, Dept Oral & Maxillofacial Surg, Bergen, Norway
Yassin, M. A. (författare)
Univ Bergen, Dept Clin Dent, Ctr Translat Oral Res TOR, Bergen, Norway
visa fler...
Jain, Shubham (författare)
KTH,Fiber- och polymerteknologi
Yamada, S. (författare)
Univ Bergen, Dept Clin Dent, Ctr Translat Oral Res TOR, Bergen, Norway
Morales-Lopez, Alvaro (författare)
KTH,Fiber- och polymerteknologi
Mustafa, K. (författare)
Univ Bergen, Dept Clin Dent, Ctr Translat Oral Res TOR, Bergen, Norway
Finne Wistrand, Anna, 1976- (författare)
KTH,Fiber- och polymerteknologi
visa färre...
 (creator_code:org_t)
Elsevier BV, 2022
2022
Engelska.
Ingår i: Materials Today Bio. - : Elsevier BV. - 2590-0064. ; 17, s. 100483-
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Degradable polyester-based scaffolds are ideal for tissue engineering applications where long-term structural integrity and mechanical support are a requisite. However, their hydrophobic and unfunctionalized surfaces restrain their tissue-mimetic quality. Instead, hyaluronan (HA) hydrogels are able to act as cell-instructive materials with the ability to recapitulate native tissue, although HA is rapidly metabolized in vivo. Taking advantage of these distinctly diverse material properties, a degradable and concurrent hybrid hydrogel material was developed that combines the short-term tissue-relevant properties of bio-orthogonal crosslinked HA with the long-term structural and mechanical support of poly(L-lactide-co-trimethylene carbonate) (PLATMC) scaffolds. This method rendered the formulation of transparent, minimally swelling hydrogel compartments with a desirable cell-instructive “local” elastic modulus within the scaffold matrix without impeding key material properties of PLATMC. Long-term degradability over 180 days in vivo was realized by the integral PLATMC scaffold architecture obtained through either extrusion-based 3D printing or salt-particulate leaching. Intrinsic diffusion capacity within the hydrogel elicited unaffected degradation kinetics of PLATMC in vivo, despite its autocatalytic bulk degradation characteristics displayed when 3D-printed. The effect of the processing method on the material properties of PLATMC markedly extends to its in vivo degradation characteristics, and essential uniform degradation behavior can be advanced using salt-particulate leaching. Regardless of the scaffold fabrication method, the polymer exhibited a soft and flexible nature throughout the degradation period, governed by the rubbery state of the polymer. Our results demonstrate that the physicochemical properties of the hybrid hydrogel scaffold endow it with the potential to act as a cell instructive microenvironment while not affecting key material properties of PLATMC postprocessing. Importantly, the HA hydrogel does not adversely impact the degradation behavior of PLATMC, a vital aspect in the fabrication of tissue engineering constructs. The results presented herein open new avenues for the adoption of concurrent and well-defined tissue-relevant materials exhibiting the potential to recreate microenvironments for cell encapsulation and drug delivery in vivo while providing essential structural integrity and long-term degradability. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Kemiteknik -- Polymerteknologi (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Chemical Engineering -- Polymer Technologies (hsv//eng)

Nyckelord

3D printing
Hyaluronan hydrogel
In vivo degradation
Polyester scaffold
Salt-particulate leaching
3D printers
Cell engineering
Cytology
Degradation
Hybrid materials
Hydrogels
Leaching
Physicochemical properties
Scaffolds (biology)
Swelling
Tissue
3-D printing
3D-printing
Hyaluronan hydrogels
In-vivo
Poly (l-lactide)
Salt particulate leaching
Trimethylene carbonate
Vivo degradation
Cells

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy