SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Wheaton A.)
 

Sökning: WFRF:(Wheaton A.) > A detailed genome-s...

A detailed genome-scale metabolic model of Clostridium thermocellum investigates sources of pyrophosphate for driving glycolysis

Schroeder, Wheaton L. (författare)
Penn State Univ, Dept Chem Engn, University Pk, PA USA.;Ctr Bioenergy Innovat, Oak Ridge, TN USA.
Kuil, Teun (författare)
KTH,Industriell bioteknologi
van Maris, Antonius J. A., Professor, 1976- (författare)
KTH,Industriell bioteknologi
visa fler...
Lynd, Lee R. (författare)
Ctr Bioenergy Innovat, Oak Ridge, TN USA.;Dartmouth Coll, Thayer Sch Engn, Hanover, NH USA.
Maranas, Costas D. (författare)
Penn State Univ, Dept Chem Engn, University Pk, PA USA.;Ctr Bioenergy Innovat, Oak Ridge, TN USA.;306 CBEB, University Pk, PA 16802 USA.
visa färre...
Penn State Univ, Dept Chem Engn, University Pk, PA USA;Ctr Bioenergy Innovat, Oak Ridge, TN USA. Industriell bioteknologi (creator_code:org_t)
Elsevier BV, 2023
2023
Engelska.
Ingår i: Metabolic engineering. - : Elsevier BV. - 1096-7176 .- 1096-7184. ; 77, s. 306-322
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Lignocellulosic biomass is an abundant and renewable source of carbon for chemical manufacturing, yet it is cumbersome in conventional processes. A promising, and increasingly studied, candidate for lignocellulose bioprocessing is the thermophilic anaerobe Clostridium thermocellum given its potential to produce ethanol, organic acids, and hydrogen gas from lignocellulosic biomass under high substrate loading. Possessing an atypical glycolytic pathway which substitutes GTP or pyrophosphate (PPi) for ATP in some steps, including in the energy-investment phase, identification, and manipulation of PPi sources are key to engineering its metabolism. Previous efforts to identify the primary pyrophosphate have been unsuccessful. Here, we explore pyrophosphate metabolism through reconstructing, updating, and analyzing a new genome-scale stoichiometric model for C. thermocellum, iCTH669. Hundreds of changes to the former GEM, iCBI655, including correcting cofactor usages, addressing charge and elemental balance, standardizing biomass composition, and incorporating the latest experimental evidence led to a MEMOTE score improvement to 94%. We found agreement of iCTH669 model predictions across all available fermentation and biomass yield datasets. The feasibility of hundreds of PPi synthesis routes, newly identified and previously proposed, were assessed through the lens of the iCTH669 model including biomass synthesis, tRNA synthesis, newly identified sources, and previously proposed PPi-generating cycles. In all cases, the metabolic cost of PPi synthesis is at best equivalent to investment of one ATP suggesting no direct energetic advantage for the cofactor substitution in C. thermocellum. Even though no unique source of PPi could be gleaned by the model, by combining with gene expression data two most likely scenarios emerge. First, previously investigated PPi sources likely account for most PPi production in wild-type strains. Second, alternate metabolic routes as encoded by iCTH669 can collectively maintain PPi levels even when previously investigated synthesis cycles are disrupted. Model iCTH669 is available at github.com/maranasgroup/iCTH669.

Ämnesord

MEDICIN OCH HÄLSOVETENSKAP  -- Medicinsk bioteknologi -- Annan medicinsk bioteknologi (hsv//swe)
MEDICAL AND HEALTH SCIENCES  -- Medical Biotechnology -- Other Medical Biotechnology (hsv//eng)

Nyckelord

Clostridium thermocellum
Bioprocessing
Pyrophosphate
Modeling
Metabolism
Glycolysis

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy