SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Guastoni Luca)
 

Sökning: WFRF:(Guastoni Luca) > Direct numerical si...

Direct numerical simulation of a zero-pressure-gradient turbulent boundary layer with passive scalars up to Prandtl number Pr=6

Geetha Balasubramanian, Arivazhagan (författare)
KTH,Strömningsmekanik och Teknisk Akustik,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre
Guastoni, Luca (författare)
KTH,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre,Strömningsmekanik och Teknisk Akustik
Schlatter, Philipp (författare)
KTH,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre,Strömningsmekanik och Teknisk Akustik,Friedrich Alexander Univ, Inst Fluid Mech, Erlangen, Germany.
visa fler...
Vinuesa, Ricardo (författare)
KTH,Linné Flow Center, FLOW,SeRC - Swedish e-Science Research Centre,Strömningsmekanik och Teknisk Akustik
visa färre...
 (creator_code:org_t)
Cambridge University Press (CUP), 2023
2023
Engelska.
Ingår i: Journal of Fluid Mechanics. - : Cambridge University Press (CUP). - 0022-1120 .- 1469-7645. ; 974
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The objective of the present study is to provide a numerical database of thermal boundary layers and to contribute to the understanding of the dynamics of passive scalars at different Prandtl numbers. In this regard, a direct numerical simulation (DNS) of an incompressible zero-pressure-gradient turbulent boundary layer is performed with the Reynolds number based on momentum thickness Re-theta ranging up to 1080. Four passive scalars, characterized by the Prandtl numbers Pr=1,2,4,6 are simulated using the pseudo-spectral code SIMSON (Chevalier et al., SIMSON : a pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH Mechanics, Stockholm, Sweden, 2007). To the best of our knowledge, the present DNS provides the thermal boundary layer with the highest Prandtl number available in the literature. It corresponds to that of water at similar to 24(degrees)C, when the fluid temperature is considered as a passive scalar. Turbulence statistics for the flow and thermal fields are computed and compared with available numerical simulations at similar Reynolds numbers. The mean flow and scalar profiles, root-mean-squared velocity and scalar fluctuations, turbulent heat flux, turbulent Prandtl number and higher-order statistics agree well with the numerical data reported in the literature. Furthermore, the pre-multiplied two-dimensional spectra of the velocity and of the passive scalars are computed, providing a quantitative description of the energy distribution at the different length scales for various wall-normal locations. The energy distribution of the heat-flux fields at the wall is concentrated on longer temporal structures with increasing Prandtl number. This is due to the thinner thermal boundary layer as thermal diffusivity decreases and, thereby, the longer temporal structures exhibit a different footprint at the wall.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Strömningsmekanik och akustik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Fluid Mechanics and Acoustics (hsv//eng)

Nyckelord

turbulent boundary layers

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy