SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Toprak Muhammet)
 

Search: WFRF:(Toprak Muhammet) > Angiogenesis in bon...

  • Abdollahi, FarnooshDepartment of Dentistry, Kashan University of Medical Science, Kashan, Iran (author)

Angiogenesis in bone tissue engineering via ceramic scaffolds: A review of concepts and recent advancements

  • Article/chapterEnglish2024

Publisher, publication year, extent ...

  • Elsevier BV,2024
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:kth-344548
  • https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-344548URI
  • https://doi.org/10.1016/j.bioadv.2024.213828DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:for swepub-publicationtype

Notes

  • QC 20240321
  • Due to organ donor shortages, long transplant waitlists, and the complications/limitations associated with auto and allotransplantation, biomaterials and tissue-engineered models are gaining attention as feasible alternatives for replacing and reconstructing damaged organs and tissues. Among various tissue engineering applications, bone tissue engineering has become a promising strategy to replace or repair damaged bone. We aimed to provide an overview of bioactive ceramic scaffolds in bone tissue engineering, focusing on angiogenesis and the effect of different biofunctionalization strategies. Different routes to angiogenesis, including chemical induction through signaling molecules immobilized covalently or non-covalently, in situ secretion of angiogenic growth factors, and the degradation of inorganic scaffolds, are described. Physical induction mechanisms are also discussed, followed by a review of methods for fabricating bioactive ceramic scaffolds via microfabrication methods, such as photolithography and 3D printing. Finally, the strengths and weaknesses of the commonly used methodologies and future directions are discussed.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Saghatchi, MahshidSchool of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran (author)
  • Paryab, AmirhoseinDepartment of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran (author)
  • Malek Khachatourian, AdrineDepartment of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran (author)
  • Stephens, Emma D.Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, 2500 University Drive NW (author)
  • Toprak, Muhammet,1973-KTH,Biomedicinsk fysik och röntgenfysik(Swepub:kth)u1u3m5a2 (author)
  • Badv, MaryamDepartment of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada, 2500 University Drive NW; Libin Cardiovascular Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada, 3330 Hospital Drive NW (author)
  • Department of Dentistry, Kashan University of Medical Science, Kashan, IranSchool of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran (creator_code:org_t)

Related titles

  • In:Biomaterials Advances: Elsevier BV1592772-95162772-9508

Internet link

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view