SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Chen Si 1985)
 

Sökning: WFRF:(Chen Si 1985) > High-Resolution Mic...

High-Resolution Microspectroscopy of Plasmonic Nanostructures for Miniaturized Biosensing

Dahlin, Andreas, 1980 (författare)
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden,Chalmers tekniska högskola,Chalmers University of Technology
Chen, Si, 1985 (författare)
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden,Chalmers tekniska högskola,Chalmers University of Technology
Jonsson, Magnus P. (författare)
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden,Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Gunnarsson, Linda K, 1971 (författare)
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden,Chalmers tekniska högskola,Chalmers University of Technology
Käll, Mikael, 1963 (författare)
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden,Chalmers tekniska högskola,Chalmers University of Technology
Höök, Fredrik, 1966 (författare)
Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden,Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
2009-07-21
2009
Engelska.
Ingår i: Analytical Chemistry. - : American Chemical Society. - 0003-2700 .- 1520-6882. ; 81:16, s. 6572-6580
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • In this article, we demonstrate how to perform microscale spectroscopy of plasmonic nanostructures in order to minimize the noise when determining the resonance peak wavelength. This is accomplished using an experimental setup containing standard optical components mounted on an ordinary light microscope. We present a detailed comparison between extinction spectroscopy in transmission mode and scattering spectroscopy under dark field illumination, which shows that extinction measurements provide higher signal-to-noise in almost all situations. Furthermore, it is shown that rational selection of nanostructure, hardware components, and data analysis algorithms enables tracking of the particle plasmon resonance wavelength from a 10 mu m x 50 mu m area with a resolution of 10(-3) nm in transmission mode. We investigate how the temporal resolution, which can be improved down to 17 Ins, affects, the noise characteristics. In addition, we show how data can be acquired from an area as small as 2 mu m x 10 mu m (similar to 240 particles) at the expense of higher noise on longer time scales. In comparison with previous work on macroscopic sensor designs, this represents a sensor miniaturization of 5 orders of magnitude, without any loss in signal-to-noise performance. As a model system, we illustrate biomolecular detection using gold nanodisks prepared by colloidal lithography. The microextinction measurements of nanodisks described here provide detection of protein surface coverages as low as 40 pg/cm(2) (less than0.1% of saturated binding). In fact, the miniaturized system provides a detection limit in terms of surface coverage comparable to state of the art macroscopic sensors, while simultaneously being as close to single protein molecule detection as sensors based on a single nanoparticle.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Signalbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Signal Processing (hsv//eng)
NATURVETENSKAP  -- Kemi -- Analytisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Analytical Chemistry (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy