SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Persson Kristin M)
 

Sökning: WFRF:(Persson Kristin M) > Redox-active conduc...

Redox-active conducting polymers modulate Salmonella biofilm formation by controlling availability of electron acceptors (vol 3, article number 19, 2017)

Gomez-Carretero, S. (författare)
Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden
Libberton, B. (författare)
Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden
Svennersten, K. (författare)
Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden
visa fler...
Persson, Kristin M., 1982- (författare)
Linköpings universitet,Fysik och elektroteknik,Tekniska fakulteten
Jager, Edwin, 1973- (författare)
Linköpings universitet,Sensor- och aktuatorsystem,Tekniska fakulteten
Berggren, Magnus, 1968- (författare)
Linköpings universitet,Fysik och elektroteknik,Tekniska fakulteten
Rhen, M. (författare)
Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Sweden
Richter-Dahlfors, A. (författare)
Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Sweden
visa färre...
 (creator_code:org_t)
2017-09-04
2017
Engelska.
Ingår i: npj Biofilms and Microbiomes. - : Springer Science and Business Media LLC. - 2055-5008. ; 3
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Biofouling is a major problem caused by bacteria colonizing abiotic surfaces, such as medical devices. Biofilms are formed as the bacterial metabolism adapts to an attached growth state. We studied whether bacterial metabolism, hence biofilm formation, can be modulated in electrochemically active surfaces using the conducting conjugated polymer poly(3,4-ethylenedioxythiophene) (PEDOT). We fabricated composites of PEDOT doped with either heparin, dodecyl benzene sulfonate or chloride, and identified the fabrication parameters so that the electrochemical redox state is the main distinct factor influencing biofilm growth. PEDOT surfaces fitted into a custom-designed culturing device allowed for redox switching in Salmonella cultures, leading to oxidized or reduced electrodes. Similarly large biofilm growth was found on the oxidized anodes and on conventional polyester. In contrast, biofilm was significantly decreased (52-58%) on the reduced cathodes. Quantification of electrochromism in unswitched conducting polymer surfaces revealed a bacteria-driven electrochemical reduction of PEDOT. As a result, unswitched PEDOT acquired an analogous electrochemical state to the externally reduced cathode, explaining the similarly decreased biofilm growth on reduced cathodes and unswitched surfaces. Collectively, our findings reveal two opposing effects affecting biofilm formation. While the oxidized PEDOT anode constitutes a renewable electron sink that promotes biofilm growth, reduction of PEDOT by a power source or by bacteria largely suppresses biofilm formation. Modulating bacterial metabolism using the redox state of electroactive surfaces constitutes an unexplored method with applications spanning from antifouling coatings and microbial fuel cells to the study of the role of bacterial respiration during infection.

Ämnesord

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy