SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Heintz Fredrik 1975 )
 

Sökning: WFRF:(Heintz Fredrik 1975 ) > (2015-2019) > Receding-Horizon La...

Receding-Horizon Lattice-based Motion Planning with Dynamic Obstacle Avoidance

Andersson, Olov, 1979- (författare)
Linköpings universitet,Artificiell intelligens och integrerade datorsystem,Tekniska fakulteten,KPLAB
Ljungqvist, Oskar, 1990- (författare)
Linköpings universitet,Reglerteknik,Tekniska fakulteten
Tiger, Mattias, 1989- (författare)
Linköpings universitet,Artificiell intelligens och integrerade datorsystem,Tekniska fakulteten,KPLAB
visa fler...
Axehill, Daniel, 1978- (författare)
Linköpings universitet,Reglerteknik,Tekniska fakulteten
Heintz, Fredrik, 1975- (författare)
Linköpings universitet,Artificiell intelligens och integrerade datorsystem,Tekniska fakulteten,KPLAB
visa färre...
 (creator_code:org_t)
Institute of Electrical and Electronics Engineers (IEEE), 2018
2018
Engelska.
Ingår i: 2018 IEEE Conference on Decision and Control (CDC). - : Institute of Electrical and Electronics Engineers (IEEE). - 9781538613955 - 9781538613948 - 9781538613962 ; , s. 4467-4474
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • A key requirement of autonomous vehicles is the capability to safely navigate in their environment. However, outside of controlled environments, safe navigation is a very difficult problem. In particular, the real-world often contains both complex 3D structure, and dynamic obstacles such as people or other vehicles. Dynamic obstacles are particularly challenging, as a principled solution requires planning trajectories with regard to both vehicle dynamics, and the motion of the obstacles. Additionally, the real-time requirements imposed by obstacle motion, coupled with real-world computational limitations, make classical optimality and completeness guarantees difficult to satisfy. We present a unified optimization-based motion planning and control solution, that can navigate in the presence of both static and dynamic obstacles. By combining optimal and receding-horizon control, with temporal multi-resolution lattices, we can precompute optimal motion primitives, and allow real-time planning of physically-feasible trajectories in complex environments with dynamic obstacles. We demonstrate the framework by solving difficult indoor 3D quadcopter navigation scenarios, where it is necessary to plan in time. Including waiting on, and taking detours around, the motions of other people and quadcopters.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Reglerteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Control Engineering (hsv//eng)

Nyckelord

Motion Planning
Optimal Control
Autonomous System
UAV
Dynamic Obstacle Avoidance
Robotics

Publikations- och innehållstyp

ref (ämneskategori)
kon (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy