SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Abbas Muhammad)
 

Sökning: WFRF:(Abbas Muhammad) > Multioxide phase-ba...

Multioxide phase-based nanocomposite electrolyte (M@SDC where M = Zn2+ / Ba2+/ La2+/Zr-2/Al3+) materials

Rafique, Asia (författare)
COMSATS Univ Islamabad, Pakistan; Govt Punjab, Pakistan
Ahmad, Muhammad Ashfaq (författare)
COMSATS Univ Islamabad, Pakistan
Shakir, Imran (författare)
King Saud Univ, Saudi Arabia
visa fler...
Ali, Amjad (författare)
COMSATS Univ Islamabad, Pakistan; Univ Okara, Pakistan
Abbas, Ghazanfar (författare)
COMSATS Univ Islamabad, Pakistan
Javed, Muhammad Sufyan (författare)
Jinan Univ, Peoples R China
Khan, M. Ajmal (författare)
COMSATS Univ Islamabad, Pakistan
Raza, Rizwan (författare)
Linköpings universitet,Halvledarmaterial,Tekniska fakulteten,COMSATS Univ Islamabad, Pakistan
visa färre...
 (creator_code:org_t)
ELSEVIER SCI LTD, 2020
2020
Engelska.
Ingår i: Ceramics International. - : ELSEVIER SCI LTD. - 0272-8842 .- 1873-3956. ; 46:52, s. 6882-6888
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • This paper deals with the development of a highly dense and stable electrolyte on the base of nanoionics oxide interface theory. This gives a comparative study of two-phase nanocomposite electrolytes that are developed for low temperature solid oxide fuel cells (LT-SOFCs). These nanocomposites are synthesised with different oxides, which are coated on the doped ceria that showed high oxide ion mobility for LT-SOFCs. These novel two-phase nanocomposite oxide ionic conductors (MCe0.8Sm0.2O2-MO2, where M = Zn2+/Ba2+/La3+/Zr2+/Al3+) were synthesised by a co-precipitation method. The interface study between these two phases was analysed by electrochemical impedance spectroscopy (EIS), while ionic conductivities were measured with DC conductivity (four probe method). The nanocomposite electrolytes exhibited higher conductivities with the increase of concentration of coated oxides but decreased at a certain level. The structural or morphological properties of the nanocomposite electrolytes were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal stability was investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The maximum performance of 590 mW/cm(2) at 550 degrees C was obtained for the Zn@SDC based cell, and the rest of the coated samples Ba@SDC, La@SDC, Zr@SDC and Al@SDC based cells showed values of 550 mW/cm(2), 540 mW/cm(2), 450 mW/cm(2), 340 mW/cm(2), respectively, with hydrogen as a fuel. Therefore, the coated-SDC based nanocomposite materials are a good approach for lowering the operating temperature to achieve the challenges of the solid oxide fuel cells (SOFC). These two-phase nanocomposite electrolytes satisfy the all requirements which one electrolyte should have, like high ionic conduction, thermodynamic stability and negligible electronic conduction.

Ämnesord

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Nyckelord

Multioxide; Fuel cell; Electrolyte; Coated materials

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy