SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Hu Xin)
 

Sökning: WFRF:(Hu Xin) > Interface engineeri...

  • Chen, ZhiwenShanghai Univ, Peoples R China (författare)

Interface engineering of NiS@MoS2 core-shell microspheres as an efficient catalyst for hydrogen evolution reaction in both acidic and alkaline medium

  • Artikel/kapitelEngelska2021

Förlag, utgivningsår, omfång ...

  • ELSEVIER SCIENCE SA,2021
  • printrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:liu-171651
  • https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171651URI
  • https://doi.org/10.1016/j.jallcom.2020.157352DOI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • Funding Agencies|National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21601120, 21805181]; China Postdoctoral Science FoundationChina Postdoctoral Science Foundation [2017M611529]; Science and Technology Commission of Shanghai MunicipalityScience & Technology Commission of Shanghai Municipality (STCSM) [17ZR1410500, 19ZR1418100]
  • Electrochemical splitting of water is one of the most reliable and effective ways for the sustainable production of pure hydrogen on a large scale, while the core of this technology lies in the development of highly active non-noble-metal-based electrocatalysts to lower the large dynamic overpotentials of electrode materials. Here, an interface engineering strategy is demonstrated to construct an efficient and stable catalyst based on NiS@MoS2 core-shell hierarchical microspheres for the hydrogen evolution reactions (HER). The ultrathin MoS2 nanosheets in-situ grow on the surface of NiS hierarchical micro-sized spheres constructed by porous nanoplates, endowing the composites with rich interfaces, well-exposed electroactive edges, high structural porosity and fast transport channels. These advantages are favorable for the improvement of catalytic sites and the transport of catalysis-relevant species. More importantly, the intimate contact between MoS2 nanosheets and NiS nanoplates synergistically favors the chemical sorption of hydrogen intermediates, thereby reducing the reaction barrier and accelerating the HER catalytic process. As a result, the optimized NiS@MoS2 catalyst manifests impressive HER activity and durability, with a low overpotential of 208 mV in 0.5 M H2SO4 and 146 mV in 1.0 M KOH at 10 mA cm(-2), respectively. This work not only provides an effective way to construct core-shell hierarchical microspheres but also a multiscale strategy to regulate the electronic structure of heterostructured materials for energy-related applications. (C) 2020 Elsevier B.V. All rights reserved.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Liu, XiaoShanghai Univ, Peoples R China (författare)
  • Xin, PeijunShanghai Univ, Peoples R China (författare)
  • Wang, HaitaoShanghai Univ, Peoples R China (författare)
  • Wu, YeShanghai Univ, Peoples R China (författare)
  • Gao, ChunyanShanghai Univ, Peoples R China (författare)
  • He, QingquanShanghai Univ, Peoples R China (författare)
  • Jiang, YongShanghai Univ, Peoples R China (författare)
  • Hu, Zhang-JunLinköpings universitet,Molekylär ytfysik och nanovetenskap,Tekniska fakulteten,Shanghai Univ, Peoples R China(Swepub:liu)zhahu14 (författare)
  • Huang, ShoushuangShanghai Univ, Peoples R China (författare)
  • Shanghai Univ, Peoples R ChinaMolekylär ytfysik och nanovetenskap (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Journal of Alloys and Compounds: ELSEVIER SCIENCE SA8530925-83881873-4669

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy