SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Larsson Marcus 1974 )
 

Sökning: WFRF:(Larsson Marcus 1974 ) > Multispectral imagi...

Multispectral imaging of hemoglobin oxygen saturation in skin microcirculation

Ewerlöf, Maria, 1987- (författare)
Linköpings universitet,Avdelningen för medicinsk teknik,Tekniska fakulteten
Salerud, Göran, 1954- (preses)
Linköpings universitet,Avdelningen för medicinsk teknik,Tekniska fakulteten
Strömberg, Tomas, 1966- (preses)
Linköpings universitet,Avdelningen för medicinsk teknik,Tekniska fakulteten
visa fler...
Larsson, Marcus, 1974- (preses)
Linköpings universitet,Avdelningen för medicinsk teknik,Tekniska fakulteten
Aalders, Maurice C. G., Professor (opponent)
Amsterdam University Medical Center, The Netherlands
visa färre...
 (creator_code:org_t)
ISBN 9789179290184
Linköping : Linköping University Electronic Press, 2022
Engelska 77 s.
Serie: Linköping Studies in Science and Technology. Dissertations, 0345-7524 ; 2167
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)
Abstract Ämnesord
Stäng  
  • The ability to measure microcirculatory parameters such as hemoglobin oxygen saturation is important since it mirrors the microcirculatory state of the body. The microcirculation delivers oxygen and nutrients to the cells of the body and, if impaired, may be a sign of circulatory failure. Human skin microcirculation can be accessed non-invasively with bio-optical technologies, where skin acts as a diagnostic window. Diffuse reflectance spectroscopy (DRS) is a technique that access skin microcirculatory parameters, especially hemoglobin oxygen saturation. Basic systems are fiber optic probebased and measure in one point, often in firm contact with the skin. Multispectral diffuse reflectance imaging (MSI) enables spatially resolved DRS, imaging skin optical parameters from spectrally resolved backscattered intensities. Spectral information detected by MSI systems contain information on, e.g., hemoglobin oxygen saturation and optical properties of the tissue. Both spatial and temporal resolved information of hemoglobin oxygen saturation is beneficial for better diagnostics in most clinical applications, e.g., to monitor progression of wound healing processes, or other microcirculatory diseases reflected in hemoglobin spectral changes. Analysis of acquired MSI multispectral data cubes to access information on tissue parameters with high contrast to these variations can be performed in several ways using models and simulations. Time resolved continuous measurements that are spectrally and spatially resolved generate large amounts of data, requiring both storage space and fast analysis. Reducing the number of wavelengths is one way to limit the amount of data, if it does not reduce the quality of interpreted results. Therefore, in my work, I investigated theoretically how to reduce the number of wavelengths, and later implemented my findings using a snapshot MSI camera. Monte Carlo (MC) simulations were used to estimate hemoglobin oxygen saturation from captured MSI data. I also performed temporally resolved in vivo measurements on healthy test subjects during vascular occlusion provocations with a 16-channel snapshot MSI system. The acquired data were analyzed using two different methods: inverse MC and trained artificial neural networks (ANNs). For inverse MC, the acquired spectrum was iteratively compared to simulated spectra, where different optical properties were used for the simulation, trying to find the best fit. ANNs were trained to intensity data measured with the MSI system, using concurrently measured hemoglobin oxygen saturation values from a validated probe-based system as target data. The results and outcome of this thesis indicate good possibility to accurately estimate hemoglobin oxygen saturation with as few as four wavelengths. Estimated hemoglobin oxygen saturation values from analysis of in vivo measurements from the 16-channel snapshot MSI camera show high conformance to values measured by the validated probe-based system. Using the ANN-approach reduces time for analysis of a 512 × 270-pixel image to 0.056 s, compared to 1 h 58 min required by the inverse MC algorithm to analyze the same data. The method enables real-time analysis, and is, consequently, preferable in many clinical situations. 

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Medicinteknik -- Medicinsk laboratorie- och mätteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Medical Engineering -- Medical Laboratory and Measurements Technologies (hsv//eng)

Nyckelord

Multispectral imaging
hemoglobin oxygen saturation
microcirculation

Publikations- och innehållstyp

vet (ämneskategori)
dok (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy