SwePub
Sök i LIBRIS databas

  Extended search

L773:0003 9861 OR L773:1096 0384
 

Search: L773:0003 9861 OR L773:1096 0384 > Autophagy, ageing a...

Autophagy, ageing and apoptosis : The role of oxidative stress and lysosomal iron

Kurz, Tino, 1974- (author)
Linköpings universitet,Hälsouniversitetet,Farmakologi
Terman, Alexei, 1957- (author)
Linköpings universitet,Hälsouniversitetet,Patologi
Brunk, Ulf, 1937- (author)
Linköpings universitet,Hälsouniversitetet,Farmakologi
 (creator_code:org_t)
Elsevier BV, 2007
2007
English.
In: Archives of Biochemistry and Biophysics. - : Elsevier BV. - 0003-9861 .- 1096-0384. ; 462:2, s. 220-230
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • As an outcome of normal autophagic degradation of ferruginous materials, such as ferritin and mitochondrial metalloproteins, the lysosomal compartment is rich in labile iron and, therefore, sensitive to the mild oxidative stress that cells naturally experience because of their constant production of hydrogen peroxide. Diffusion of hydrogen peroxide into the lysosomes results in Fenton-type reactions with the formation of hydroxyl radicals and ensuing peroxidation of lysosomal contents with formation of lipofuscin that amasses in long-lived postmitotic cells. Lipofuscin is a non-degradable polymeric substance that forms at a rate that is inversely related to the average lifespan across species and is built up of aldehyde-linked protein residues. The normal accumulation of lipofuscin in lysosomes seems to reduce autophagic capacity of senescent postmitotic cells-probably because lipofuscin-loaded lysosomes continue to receive newly formed lysosomal enzymes, which results in lack of such enzymes for autophagy. The result is an insufficient and declining rate of autophagic turnover of worn-out and damaged cellular components that consequently accumulate in a way that upsets normal metabolism. In the event of a more substantial oxidative stress, enhanced formation of hydroxyl radicals within lysosomes jeopardizes the membrane stability of particularly iron-rich lysosomes, specifically of autophagolysosomes that have recently participated in the degradation of iron-rich materials. For some time, the rupture of a limited number of lysosomes has been recognized as an early upstream event in many cases of apoptosis, particularly oxidative stress-induced apoptosis, while necrosis results from a major lysosomal break. Consequently, the regulation of the lysosomal content of redox-active iron seems to be essential for the survival of cells both in the short- and the long-term. © 2007 Elsevier Inc. All rights reserved.

Keyword

MEDICINE
MEDICIN

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view