SwePub
Sök i LIBRIS databas

  Extended search

L773:1944 8252 OR L773:1944 8244
 

Search: L773:1944 8252 OR L773:1944 8244 > Real-Time Quantific...

Real-Time Quantification of Microscale Bioadhesion Events In situ Using Imaging Surface Plasmon Resonance (iSPR)

Aldred, Nick (author)
Newcastle University
Ekblad, Tobias (author)
Linköpings universitet,Sensorvetenskap och Molekylfysik,Tekniska högskolan
Andersson, Olof (author)
Linköpings universitet,Sensorvetenskap och Molekylfysik,Tekniska högskolan
show more...
Liedberg, Bo (author)
Linköpings universitet,Sensorvetenskap och Molekylfysik,Tekniska högskolan
Clare, Anthony S. (author)
Newcastle University
show less...
 (creator_code:org_t)
2011-06-02
2011
English.
In: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 3:6, s. 2085-2091
  • Journal article (peer-reviewed)
Abstract Subject headings
Close  
  • From macro- to nanoscales, adhesion phenomena are all-pervasive in nature yet remain poorly understood. In recent years, studies of biological adhesion mechanisms, terrestrial and marine, have provided inspiration for "biomimetic" adhesion strategies and important insights for the development of fouling-resistant materials. Although the focus of most contemporary bioadhesion research is on large organisms such as marine mussels, insects and geckos, adhesion events on the micro/nanoscale are critical to our understanding of important underlying mechanisms. Observing and quantifying adhesion at this scale is particularly relevant for the development of biomedical implants and in the prevention of marine biofouling. However, such characterization has so far been restricted by insufficient quantities of material for biochemical analysis and the limitations of contemporary imaging techniques. Here, we introduce a recently developed optical method that allows precise determination of adhesive deposition by microscale organisms in situ and in real time; a capability not before demonstrated. In this extended study we used the cypris larvae of barnacles and a combination of conventional and imaging surface plasmon resonance techniques to observe and quantify adhesive deposition onto a range of model surfaces (CH(3)-, COOH-, NH(3)-, and mPEG-terminated SAMs and a PEGMA/HEMA hydrogel). We then correlated this deposition to passive adsorption of a putatively adhesive protein from barnacles. In this way, we were able to rank surfaces in order of effectiveness for preventing barnacle cyprid exploration and demonstrate the importance of observing the natural process of adhesion, rather than predicting surface effects from a model system. As well as contributing fundamentally to the knowledge on the adhesion and adhesives of barnacle larvae, a potential target for future biomimetic glues, this method also provides a versatile technique for laboratory testing of fouling-resistant chemistries.

Keyword

imaging SPR; barnacle cyprid; footprints; biological adhesion; biofouling
TECHNOLOGY
TEKNIKVETENSKAP

Publication and Content Type

ref (subject category)
art (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view