SwePub
Sök i LIBRIS databas

  Utökad sökning

L773:0165 1684
 

Sökning: L773:0165 1684 > (2000-2004) > Asymptotic SNR-perf...

Asymptotic SNR-performance of some image combination techniques for phased-array MRI

Erdogmus, Deniz (författare)
Computational NeuroEngineering Laboratory, Department of Electrical & Computer Engineering, University of Florida, US
Larsson, Erik G. (författare)
Department of Electrical & Computer Engineering, The George Washington University, USA
Yan, Rui (författare)
Computational NeuroEngineering Laboratory, Department of Electrical & Computer Engineering, University of Florida, US
visa fler...
Principe, Jose C. (författare)
Computational NeuroEngineering Laboratory, Department of Electrical & Computer Engineering, University of Florida, US
Fitzsimmons, Jeffrey R. (författare)
Department of Radiology, University of Florida, USA
visa färre...
 (creator_code:org_t)
Amsterdam, The Netherlands : Elsevier, 2004
2004
Engelska.
Ingår i: Signal Processing. - Amsterdam, The Netherlands : Elsevier. - 0165-1684 .- 1872-7557. ; 84:6, s. 997-1003
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Phased-array magnetic resonance imaging technology is currently flourishing with the promise of obtaining a profitable trade-off between image quality and image acquisition speed. The image quality is generally measured in terms of the signal-to-noise ratio (SNR), which is often calculated using samples taken from the reconstructed image. In this paper, we derive analytical expressions for the asymptotic SNR in the final image for three different phased-array image combination methods, namely: (1) sum-of-squares, (2) singular value decomposition, and (3) normalized coil averaging. The SNR expressions are expressed in terms of the statistics of the noise in the measurements, as well as the coil sensitivity coefficients. Our results can facilitate a better understanding for the phased-array image combination problem, as well as provide a tool for the optimal design of coils.

Nyckelord

TECHNOLOGY
TEKNIKVETENSKAP

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy