SwePub
Sök i LIBRIS databas

  Extended search

id:"swepub:oai:DiVA.org:lnu-45750"
 

Search: id:"swepub:oai:DiVA.org:lnu-45750" > Waste Heat Recovery...

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist
  • Ahlgren, Fredrik,1980-Linnaeus University,Linnéuniversitetet,Sjöfartshögskolan (SJÖ) (author)

Waste Heat Recovery in a Cruise Vessel in the Baltic Sea by Using an Organic Rankine Cycle : A Case Study

  • Article/chapterEnglish2016

Publisher, publication year, extent ...

  • ASME Press,2016
  • printrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:lnu-45750
  • https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-45750URI
  • https://doi.org/10.1115/1.4031145DOI
  • https://lup.lub.lu.se/record/7756629URI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Maritime transportation is a significant contributor to SOx,NOx, and particle matter (PM) emissions, and to a lesser extent, of CO2. Recently, new regulations are being enforced in special geographical areas to limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry toward the improvement of the energy efficiency of ships. Although more sophisticated and complex engine designs can improve significantly of the energy systems on ships, waste heat recovery arises as the most effective technique for the reduction of the energy consump- tion. In this sense, it is estimated that around 50% of the total energy from the fuel con- sumed in a ship is wasted and rejected through liquid and gas streams. The primary heat sources for waste heat recovery are the engine exhaust and coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines (AE) exhaust heat. Experimental data from the engines on the cruise ship M/S Birka Stockholm were logged during a port-to- port cruise from Stockholm to Mariehamn, over a period of 4 weeks. The ship has four main engines (ME) W€artsil€ a 5850kW for propulsion, and four AE 2760kW which areused for electrical generation. Six engine load conditions were identified depending on the ship’s speed. The speed range from 12 to 14 kn was considered as the design condi- tion for the ORC, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene as working fluid would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total elec- tricity consumption on board. These data confirmed the ORC as a feasible and promisingtechnology for the reduction of fuel consumption and CO2 emissions of existing ships.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Mondejar, MariaLund University,Lunds universitet,Kraftverksteknik,Institutionen för energivetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Thermal Power Engineering,Department of Energy Sciences,Departments at LTH,Faculty of Engineering, LTH(Swepub:lu)ener-mmr (author)
  • Genrup, MagnusLund University,Lunds universitet,Kraftverksteknik,Institutionen för energivetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Thermal Power Engineering,Department of Energy Sciences,Departments at LTH,Faculty of Engineering, LTH,Lund University, Sweden(Swepub:lu)vok-mge (author)
  • Thern, MarcusLund University,Lunds universitet,Kraftverksteknik,Institutionen för energivetenskaper,Institutioner vid LTH,Lunds Tekniska Högskola,Thermal Power Engineering,Department of Energy Sciences,Departments at LTH,Faculty of Engineering, LTH,Lund University, Sweden(Swepub:lu)vok-mth (author)
  • LinnéuniversitetetSjöfartshögskolan (SJÖ) (creator_code:org_t)

Related titles

  • In:Journal of engineering for gas turbines and power: ASME Press138:10742-47951528-8919

Internet link

Find in a library

To the university's database

  • 1 of 1
  • Previous record
  • Next record
  •    To hitlist

Find more in SwePub

By the author/editor
Ahlgren, Fredrik ...
Mondejar, Maria
Genrup, Magnus
Thern, Marcus
About the subject
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Environmental En ...
and Marine Engineeri ...
ENGINEERING AND TECHNOLOGY
ENGINEERING AND ...
and Mechanical Engin ...
and Energy Engineeri ...
Articles in the publication
Journal of engin ...
By the university
Linnaeus University
Lund University

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view