SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Crona Mikael)
 

Sökning: WFRF:(Crona Mikael) > Diversity in Overal...

Diversity in Overall Activity Regulation of Ribonucleotide Reductase

Jonna, Venkateswara Rao (författare)
Umeå universitet,Institutionen för medicinsk kemi och biofysik,Anders Hofer,Umeå University
Crona, Mikael (författare)
Stockholms universitet,Karolinska Institutet,Institutionen för biokemi och biofysik,Stockholm University
Rofougaran, Reza (författare)
Umeå universitet,Institutionen för medicinsk kemi och biofysik,Anders Hofer,Umeå University
visa fler...
Lundin, Daniel, 1965- (författare)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm University,Jarone Pinhassi
Johansson, Samuel (författare)
Umeå universitet,Institutionen för medicinsk kemi och biofysik,Anders Hofer,Umeå University
Brännström, Kristoffer (författare)
Umeå universitet,Institutionen för medicinsk kemi och biofysik,Anders Hofer,Umeå University
Sjöberg, Britt-Marie (författare)
Stockholms universitet,Institutionen för biokemi och biofysik,Stockholm University
Hofer, Anders (författare)
Umeå universitet,Institutionen för medicinsk kemi och biofysik,Anders Hofer,Umeå University
visa färre...
 (creator_code:org_t)
2015
2015
Engelska.
Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; , s. 1-24
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides, which are used as building blocks for DNA replication and repair. This process is tightly regulated via two allosteric sites, the specificity site (s-site) and the overall activity site (a-site). The a-site resides in an N-terminal ATP cone domain that binds dATP or ATP and functions as an on/off switch, whereas the composite s-site binds ATP, dATP, dTTP, or dGTP and determines which substrate to reduce. There are three classes of RNRs, and class I RNRs consist of different combinations of α and β subunits. In eukaryotic and Escherichia coli canonical class I RNRs, dATP inhibits enzyme activity through the formation of inactive α6 and α4β4 complexes, respectively. Here we show that the Pseudomonas aeruginosa class I RNR has a duplicated ATP cone domain and represents a third mechanism of overall activity regulation. Each α polypeptide binds three dATP molecules, and the N-terminal ATP cone is critical for binding two of the dATPs because a truncated protein lacking this cone could only bind one dATP to its s-site. ATP activates the enzyme solely by preventing dATP from binding. The dATP-induced inactive form is an α4 complex, which can interact with β2 to form a non-productive α4β2 complex. Other allosteric effectors induce a mixture of α2 and α4 forms, with the former being able to interact with β2 to form active α2β2 complexes. The unique features of the P. aeruginosa RNR are interesting both from evolutionary and drug discovery perspectives.

Ämnesord

NATURVETENSKAP  -- Biologi -- Biokemi och molekylärbiologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences -- Biochemistry and Molecular Biology (hsv//eng)
NATURVETENSKAP  -- Biologi (hsv//swe)
NATURAL SCIENCES  -- Biological Sciences (hsv//eng)

Nyckelord

Allosteric Regulation
dATP inhibition
enzyme inactivation
oligomerization
overall activity regulation
protein complex
Pseudomonas aeruginosa (P. aeruginosa)
Ribonucleotide Reductase
Chemistry
Kemi

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy