SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Brandsdal Bjørn O.)
 

Sökning: WFRF:(Brandsdal Bjørn O.) > Cold adaptation of ...

  • Bjelic, SinisaUppsala universitet,Strukturell molekylärbiologi (författare)

Cold adaptation of enzyme reaction rates

  • Artikel/kapitelEngelska2008

Förlag, utgivningsår, omfång ...

  • 2008-08-30
  • American Chemical Society (ACS),2008
  • printrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:lnu-51101
  • https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-51101URI
  • https://doi.org/10.1021/bi801177kDOI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-105255URI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • A major issue for organisms living at extreme temperatures is to preserve both stability and activity of their enzymes. Cold-adapted enzymes generally have a reduced thermal stability, to counteract freezing, and show a lower enthalpy and a more negative entropy of activation compared to mesophilic and thermophilic homologues. Such a balance of thermodynamic activation parameters can make the reaction rate decrease more linearly, rather than exponentially, as the temperature is lowered, but the structural basis for rate optimization toward low working temperatures remains unclear. In order to computationally address this problem, it is clear that reaction simulations rather than standard molecular dynamics calculations are needed. We have thus carried out extensive computer simulations of the keto-enol(ate) isomerization steps in differently adapted citrate synthases to explore the structure-function relationships behind catalytic rate adaptation to different temperatures. The calculations reproduce the absolute rates of the psychrophilic and mesophilic enzymes at 300 K, as well as the lower enthalpy and more negative entropy of activation of the cold-adapted enzyme, where the latter simulation result is obtained from high-precision Arrhenius plots. The overall catalytic effect originates from electrostatic stabilization of the transition state and enolate and the reduction of reorganization free energy. The simulations, however, show psychrophilic, mesophilic, and hyperthermophilic citrate synthases to have increasingly stronger electrostatic stabilization of the transition state, while the energetic penalty in terms of internal protein interactions follows the reverse order with the cold-adapted enzyme having the most favorable energy term. The lower activation enthalpy and more negative activation entropy observed for cold-adapted enzymes are found to be associated with a decreased protein stiffness. The origin of this effect is, however, not localized to the active site but to other regions of the protein structure.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Brandsdal, Bjørn OUniversity of Tromsø, Norway (författare)
  • Åqvist, JohanUppsala universitet,Strukturell molekylärbiologi(Swepub:uu)johanaq (författare)
  • Uppsala universitetStrukturell molekylärbiologi (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:Biochemistry: American Chemical Society (ACS)47:38, s. 10049-100570006-29601520-4995

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Bjelic, Sinisa
Brandsdal, Bjørn ...
Åqvist, Johan
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Biologi
och Biokemi och mole ...
NATURVETENSKAP
NATURVETENSKAP
och Biologi
Artiklar i publikationen
Biochemistry
Av lärosätet
Linnéuniversitetet
Uppsala universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy