SwePub
Sök i LIBRIS databas

  Utökad sökning

L773:0947 3580
 

Sökning: L773:0947 3580 > Towards fully auton...

Towards fully autonomous orbit management for low-earth orbit satellites based on neuro-evolutionary algorithms and deep reinforcement learning

Kyuroson, Alexander (författare)
Robotics and Artificial Intelligence Group, Department of Computer, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
Banerjee, Avijit (författare)
Luleå tekniska universitet,Signaler och system
Tafanidis, Nektarios Aristeidis (författare)
Robotics and Artificial Intelligence Group, Department of Computer, Electrical and Space Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
visa fler...
Satpute, Sumeet (författare)
Luleå tekniska universitet,Signaler och system
Nikolakopoulos, George (författare)
Luleå tekniska universitet,Signaler och system,o=Robotics and Artificial Intelligence Group, Department of Computer, Electrical and Space Engineering, Luleå University of Technology, p=971 87, pp=, c=Luleå, cy=Sweden
visa färre...
 (creator_code:org_t)
2024
2024
Engelska.
Ingår i: European Journal of Control. - : Elsevier. - 0947-3580 .- 1435-5671.
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The recent advances in space technology are focusing on fully autonomous, real-time, long-term orbit management and mission planning for large-scale satellite constellations in Low-Earth Orbit (LEO). Thus, a pioneering approach for autonomous orbital station-keeping has been introduced using a model-free Deep Policy Gradient-based Reinforcement Learning (DPGRL) strategy explicitly tailored for LEO. Addressing the critical need for more efficient and self-regulating orbit management in LEO satellite constellations, this work explores the potential synergy between Deep Reinforcement Learning (DRL) and Neuro-Evolution of Augmenting Topology (NEAT) to optimize station-keeping strategies with the primary goal to empower satellite to autonomously maintain their orbit in the presence of external perturbations within an allowable tolerance margin, thereby significantly reducing operational costs while maintaining precise and consistent station-keeping throughout their life cycle. The study specifically tailors DPGRL algorithms for LEO satellites, considering low-thrust constraints for maneuvers and integrating dense reward schemes and domain-based reward shaping techniques. By showcasing the adaptability and scalability of the combined NEAT and DRL framework in diverse operational scenarios, this approach holds immense promise for revolutionizing autonomous orbit management, paving the way for more efficient and adaptable satellite operations while incorporating the physical constraints of satellite, such as thruster limitations.

Ämnesord

NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Elektroteknik och elektronik -- Signalbehandling (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Electrical Engineering, Electronic Engineering, Information Engineering -- Signal Processing (hsv//eng)

Nyckelord

Deep reinforcement learning
Orbit management
Robotics
Satellite constellation
Robotics and Artificial Intelligence
Robotik och artificiell intelligens

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy