SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Majid Abdul)
 

Search: WFRF:(Majid Abdul) > (2020-2023) > Utilization of nano...

  • Owaid, Haider M.Civil Engineering Department, University of Babylon, Hilla, Iraq (author)

Utilization of nanoparticles and waste materials in cement mortars

  • Article/chapterEnglish2023

Publisher, publication year, extent ...

  • Walter de Gruyter,2023
  • electronicrdacarrier

Numbers

  • LIBRIS-ID:oai:DiVA.org:ltu-101623
  • https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-101623URI
  • https://doi.org/10.1515/jmbm-2022-0289DOI

Supplementary language notes

  • Language:English
  • Summary in:English

Part of subdatabase

Classification

  • Subject category:ref swepub-contenttype
  • Subject category:art swepub-publicationtype

Notes

  • Validerad;2023;Nivå 2;2023-10-11 (joosat);CC BY 4.0 License
  • Cement has shaped the modern built environment, but its production generates substantial carbon dioxide emissions. Consequently, there is an urgent need to identify alternative cementitious building materials for sustainable construction. In this study, cement mortars (CMs) were produced by partially replacing cement with nanoclay (NC) and granite dust (GD). The replacement proportions (% by weight of cement) of these materials were 1.5, 3, and 4.5% for NC and 10, 20, and 30% for GD. For mortars containing NC but not GD, the strength was maximized when the NC replacement proportion was 3%. To evaluate the combined effect of partially replacing cement with both NC and GD on the fresh and hardening properties of cement-blended mortars, ternary binder mixtures containing 3% NC together with 10, 20, or 30% GD were prepared, and their workability, bulk density, compressive strength (at 7, 28, and 90 days), and flexural strength were measured. Increasing the content of NC and/or GD reduced the flowability of these mortars relative to that of the reference mortar mix because it increased the content of fine materials. CM containing 3% NC and 10% GD had the highest compressive strength at 7, 28, and 90 days while also having the greatest flexural strength when compared to the control mix. This is most likely due to the high silica and alumina content of NC and GD, as well as their high specific surface area, which would improve the maturity and density of the matrix when compared to cement alone.

Subject headings and genre

Added entries (persons, corporate bodies, meetings, titles ...)

  • Humad, Abeer M.Civil Engineering Department, University of Babylon, Hilla, Iraq (author)
  • Al-Gburi, MajidLuleå tekniska universitet,Byggkonstruktion och brand,Department of Building and Construction Techniques, Northern Technical University, Mosul, Iraq(Swepub:ltu)majali (author)
  • Ghali, Zainab Abdul SattarCivil Engineering Department, University of Babylon, Hilla, Iraq (author)
  • Sas, GabrialLuleå tekniska universitet,Byggkonstruktion och brand(Swepub:ltu)gabsas (author)
  • Civil Engineering Department, University of Babylon, Hilla, IraqByggkonstruktion och brand (creator_code:org_t)

Related titles

  • In:Journal of the Mechanical Behavior of Materials: Walter de Gruyter32:10334-89382191-0243

Internet link

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view