SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Li Shao Jing)
 

Sökning: WFRF:(Li Shao Jing) > An unsupervised end...

An unsupervised end-to-end approach to fault detection in delta 3D printers using deep support vector data description

Zhang, Liangwei (författare)
Department of Industrial Engineering, Dongguan University of Technology, Dongguan, 523808, China
Lin, Jing (författare)
Mälardalens universitet,Luleå tekniska universitet,Drift, underhåll och akustik,Division of Product Realization, Mälardalen University, 63220, Eskilstuna, Sweden,Innovation och produktrealisering,Division of Operation and Maintenance, Luleå University of Technology, Luleå, 97187, Sweden
Shao, Haidong (författare)
State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
visa fler...
Yang, Zhe (författare)
Department of Industrial Engineering, Dongguan University of Technology, Dongguan, 523808, China
Liu, Biyu (författare)
School of Economics and Management, Fuzhou University, Fuzhou, 350116, China
Li, Chuan (författare)
Department of Industrial Engineering, Dongguan University of Technology, Dongguan, 523808, China
visa färre...
 (creator_code:org_t)
Elsevier, 2024
2024
Engelska.
Ingår i: Journal of manufacturing systems. - : Elsevier. - 0278-6125 .- 1878-6642. ; 72, s. 214-228
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Fault detection in 3D printers is crucial for safety and quality assurance, emphasizing proactive prediction over reactive rectification based on manufacturing factors. Presently, most detection techniques rely on shallow models with limited representational capabilities, necessitating manual feature extraction from the captured signals. This manual process is not only cumbersome and potentially costly but often requires intricate domain-specific knowledge. Additionally, these handcrafted features might not optimally distinguish between normal and faulty samples, potentially reducing prediction accuracy. In this study, we introduce an end-to-end approach using the Deep Support Vector Data Description model for fault detection in 3D printers. This design inherently facilitates automatic feature learning, where the features are synergistically optimized for fault detection. Our experiments leverage magnetic field signals for fault detection in 3D printers, using 1D convolutional layers to discern temporal signal patterns and wide kernels in the initial layer to mitigate high-frequency noise. Furthermore, our model can be easily adapted to integrate multi-channel signals for enhanced accuracy. Evaluations on real-world data from a delta 3D printer underscore the superiority of our method compared to existing alternatives.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Tillförlitlighets- och kvalitetsteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Reliability and Maintenance (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Nyckelord

Fault detection
3D printers
Deep learning
End-to-end learning
Support Vector Data Description
Product quality assurance
Operation and Maintenance Engineering
Drift och underhållsteknik

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy