SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Dai Jing)
 

Sökning: WFRF:(Dai Jing) > Hybrid data-driven ...

Hybrid data-driven and physics-based modeling for viscosity prediction of ionic liquids

Fan, Jing (författare)
State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
Dai, Zhengxing (författare)
State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
Cao, Jian (författare)
State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
visa fler...
Mu, Liwen (författare)
State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
Ji, Xiaoyan (författare)
Luleå tekniska universitet,Energivetenskap,State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
Lu, Xiaohua (författare)
State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
visa färre...
 (creator_code:org_t)
2024
2024
Engelska.
Ingår i: Green Energy & Environment. - : Elsevier. - 2468-0257.
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Viscosity is one of the most important fundamental properties of fluids. However, accurate acquisition of viscosity for ionic liquids (ILs) remains a critical challenge. In this study, an approach integrating prior physical knowledge into the machine learning (ML) model was proposed to predict the viscosity reliably. The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size, structure, and interactions of the ILs. Three strategies based on the residuals of the COSMO-RS model were created as the output of ML, where the strategy directly using experimental data was also studied for comparison. The performance of six ML algorithms was compared in all strategies, and the CatBoost model was identified as the optimal one. The strategies employing the relative deviations were superior to that using the absolute deviation, and the relative ratio revealed the systematic prediction error of the COSMO-RS model. The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set (R2 = 0.9999, MAE = 0.0325), reducing the average absolute relative deviation (AARD) in modeling from 52.45 % to 1.54 %. Features importance analysis indicated the average energy correction, solvation-free energy, and polarity moment were the key influencing the systematic deviation.

Ämnesord

NATURVETENSKAP  -- Kemi -- Fysikalisk kemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Physical Chemistry (hsv//eng)
NATURVETENSKAP  -- Data- och informationsvetenskap -- Datavetenskap (hsv//swe)
NATURAL SCIENCES  -- Computer and Information Sciences -- Computer Sciences (hsv//eng)

Nyckelord

COSMO-RS
Fundamental property
Ionic liquids
Machine learning
Viscosity
Energiteknik
Energy Engineering

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy