SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Zhang Jiajia)
 

Sökning: WFRF:(Zhang Jiajia) > Gravity field induc...

Gravity field induced composite solid electrolytes enabling enhanced Li+ transport kinetics of lithium metal battery

Li, Jiajia (författare)
Luleå tekniska universitet,Energivetenskap,CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Zhu, Jiufu (författare)
CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Hu, Haiman (författare)
Luleå tekniska universitet,Energivetenskap
visa fler...
Zhang, Haitao (författare)
CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
Ji, Xiaoyan (författare)
Luleå tekniska universitet,Energivetenskap
Zhang, Suojiang (författare)
CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Longzihu New Energy Laboratory, Zhengzhou, Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, PR China
visa färre...
 (creator_code:org_t)
Elsevier, 2024
2024
Engelska.
Ingår i: Chemical Engineering Journal. - : Elsevier. - 1385-8947 .- 1873-3212. ; 484
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Multilayer composite solid electrolytes (CSEs) exhibit many advantages over uniform monolayer CSEs but are hindered by high interlayer resistance and complex preparation methods. Herein, for the first time, a natural sedimentation strategy was developed to construct concentration gradient CSEs (GCSEs) for lithium-metal batteries (LMBs). This method utilizes intrinsic gravity and photopolymerization to achieve multiple functions in the monolayer, avoiding additional interlayer resistance and reducing preparation time. Owning to the concentration gradient structure, the Li+ transport on the PolyIL-rich side relies on the weak solvation of Li+ with EMIMTFSI, while the Li+ transport on the LLZTO-rich side follows the 'vehicular diffusion' mechanism with the aid of TFSI−, improving the Li+ transport and enhances the Li+ transference number, leading to the high stability to 2300 h for the Li//Li cell and stable operation at 4.3 V with 89.6 % capacity retention after 100 cycles for the assembled LMB. Moreover, compared with the monolayer uniform hybrid CSEs, the gradient structure alleviates uncoordinated thermal expansion between LLZTO and PolyIL, avoiding stress increase during cycling and battery capacity fade. This gradient strategy mitigates high interlayer resistance and offers a universal path to address the sluggish Li+ transportation in multilayer CSEs and improves compatibility between the electrolyte and electrodes in fabricating solid-state batteries.

Ämnesord

NATURVETENSKAP  -- Kemi -- Materialkemi (hsv//swe)
NATURAL SCIENCES  -- Chemical Sciences -- Materials Chemistry (hsv//eng)

Nyckelord

Poly(ionic liquid)s
Natural sedimentation
Concentration gradient
Ionic liquids
Lithium metal battery
Energiteknik
Energy Engineering

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Li, Jiajia
Zhu, Jiufu
Hu, Haiman
Zhang, Haitao
Ji, Xiaoyan
Zhang, Suojiang
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Kemi
och Materialkemi
Artiklar i publikationen
Chemical Enginee ...
Av lärosätet
Luleå tekniska universitet

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy