SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Öhman Marcus Professor 1969 )
 

Search: WFRF:(Öhman Marcus Professor 1969 ) > Ash transformation ...

Ash transformation in single-pellet combustion and gasification of biomass with special focus on phosphorus

Hedayati, Ali, 1984- (author)
Luleå tekniska universitet,Energivetenskap,Energy Engineering
Öhman, Marcus, 1969- (thesis advisor)
Luleå tekniska universitet,Energivetenskap
Backman, Rainer, Professor (opponent)
TEC-Lab Tillämpad fysik och elektronik, Umeå universitet, Umeå
 (creator_code:org_t)
ISBN 9789177905837
Luleå University of Technology, 2020
English.
Series: Licentiate thesis / Luleå University of Technology, 1402-1757
  • Licentiate thesis (other academic/artistic)
Abstract Subject headings
Close  
  • The utilization of different biomass feedstocks in thermal conversion systems can contribute towards mitigation of global warming. However, the formation of different ash fractions (i.e., bottom ash, and fly ash) during thermal conversionof biomass can cause several ash-related problems such as deposit formation, slagging, and particle emissions, all of which may limit its usage as an energy source. It has been found that phosphorus (P), even in relatively low concentrations, can play a vitalrole in the abovementioned ash-related problems. However, the ash transformation reactions occurring in the thermal conversion of P-bearing biomass assortments are not fully understood and rarely described in the literature. Therefore, an understanding ofthe phenomena associated with ash transformations with a special focus on P is crucial.The overall objective was to determine the ash transformation and release of P duringsingle-pelletthermochemical conversion ofdifferent types of agricultural and forest fuelsin the low to medium temperature range (600-950 °C). Different agricultural biomasses (poplar, wheat straw, grass, and wheat grain residues), as well as forest residues (bark, twigs, and a mixture of bark and twigs) were used. Thebark and poplar fuels represent a fuel rich in K and Ca with minor P contents. The wheat straw, grass, and twigs represent a typical Si- and K-rich fuel with minor and moderate P contents. The wheat grain residues represent a typical K- and P-rich fuel witha considerable amount of Mg. The produced residual materials, i.e. chars and ashes, were characterized by SEM-EDS, XRD, and ICP-OES. The experimental results were interpreted with support from thermodynamic equilibrium calculations (TECs).The overall findings are that the majority of P (>80%) in all the studied fuels remained in the final condensed residues, and that the main fraction of P release occurred during the devolatilization stage. The chemical form of P in the residuesis strongly dependent on the relative concentrations of other major ash-forming elements such as K, Ca, and Si, as well as the type of association of P in the pure fuel. For woody-based fuels rich in Ca and K (poplar, bark, and twigs in this study), P in theash is generally found in the form of crystalline hydroxyapatite. For herbaceous fuels rich in Si and K (wheat straw and grass), P in the ash is generally found in Ca5(PO4)3OH, Ca15(PO4)2(SiO4),KCaPO4, and K-Ca/Mg phosphosilicate melts. For wheat grain residues rich in P, K, and Mg, P in the ash is found in crystalline forms K4Mg4(P2O7)3, K2MgP2O7,K2CaP2O7, and KMgPO4, as well as amorphous K-Mg/Ca phosphates.The obtained new knowledge can be used to find practical measures to mitigate ash-related problems during thermochemical conversion of P-bearing biomass fuels. It can also be used to find optimal pyrolysis process conditions to obtain biocharsuitable as alternative fuels and reducing agents in the metallurgical industry.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Keyword

Energy Engineering
Energiteknik

Publication and Content Type

vet (subject category)
lic (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view