SwePub
Sök i LIBRIS databas

  Utökad sökning

id:"swepub:oai:DiVA.org:ltu-78326"
 

Sökning: id:"swepub:oai:DiVA.org:ltu-78326" > Wafer-Scale Growth ...

  • Wang, MengjingNanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States,University of Central Florida, USA (författare)

Wafer-Scale Growth of 2D PtTe2 with Layer Orientation Tunable High Electrical Conductivity and Superior Hydrophobicity

  • Artikel/kapitelEngelska2020

Förlag, utgivningsår, omfång ...

  • 2020-02-11
  • American Chemical Society (ACS),2020
  • printrdacarrier

Nummerbeteckningar

  • LIBRIS-ID:oai:DiVA.org:ltu-78326
  • https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-78326URI
  • https://doi.org/10.1021/acsami.9b21838DOI
  • https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-108515URI

Kompletterande språkuppgifter

  • Språk:engelska
  • Sammanfattning på:engelska

Ingår i deldatabas

Klassifikation

  • Ämneskategori:ref swepub-contenttype
  • Ämneskategori:art swepub-publicationtype

Anmärkningar

  • Validerad;2020;Nivå 2;2020-04-03 (alebob)
  • Platinum ditelluride (PtTe2) is an emerging semimetallic two-dimensional (2D) transition-metal dichalcogenide (TMDC) crystal with intriguing band structures and unusual topological properties. Despite much devoted efforts, scalable and controllable synthesis of large-area 2D PtTe2 with well-defined layer orientation has not been established, leaving its projected structure–property relationship largely unclarified. Herein, we report a scalable low-temperature growth of 2D PtTe2 layers on an area greater than a few square centimeters by reacting Pt thin films of controlled thickness with vaporized tellurium at 400 °C. We systematically investigated their thickness-dependent 2D layer orientation as well as its correlated electrical conductivity and surface property. We unveil that 2D PtTe2 layers undergo three distinct growth mode transitions, i.e., horizontally aligned holey layers, continuous layer-by-layer lateral growth, and horizontal-to-vertical layer transition. This growth transition is a consequence of competing thermodynamic and kinetic factors dictated by accumulating internal strain, analogous to the transition of Frank–van der Merwe (FM) to Stranski–Krastanov (SK) growth in epitaxial thin-film models. The exclusive role of the strain on dictating 2D layer orientation has been quantitatively verified by the transmission electron microscopy (TEM) strain mapping analysis. These centimeter-scale 2D PtTe2 layers exhibit layer orientation tunable metallic transports yielding the highest value of ∼1.7 × 106 S/m at a certain critical thickness, supported by a combined verification of density functional theory (DFT) and electrical measurements. Moreover, they show intrinsically high hydrophobicity manifested by the water contact angle (WCA) value up to ∼117°, which is the highest among all reported 2D TMDCs of comparable dimensions and geometries. Accordingly, this study confirms the high material quality of these emerging large-area 2D PtTe2 layers, projecting vast opportunities employing their tunable layer morphology and semimetallic properties from investigations of novel quantum phenomena to applications in electrocatalysis.

Ämnesord och genrebeteckningar

Biuppslag (personer, institutioner, konferenser, titlar ...)

  • Ko, Tae-JunNanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States,University of Central Florida, USA (författare)
  • Shawkat, Mashiyat SumaiyaNanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States. Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States,University of Central Florida, USA;University of Central Florida, USA (författare)
  • Han, Sang SubNanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States. Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea,University of Central Florida, USA;Seoul National University, Republic of Korea (författare)
  • Okogbue, EmmanuelNanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States. Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States,University of Central Florida, USA;University of Central Florida, USA (författare)
  • Chung, Hee-SukAnalytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea,Korea Basic Science Institute, Republic of Korea (författare)
  • Bae, Tae-SungAnalytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea,Korea Basic Science Institute, Republic of Korea (författare)
  • Sattar, ShahidLuleå tekniska universitet,Materialvetenskap,Luleå University of Technology, Sweden(Swepub:lnu)shsaaa (författare)
  • Gil, JaeyoungDepartment of Chemistry, Seoul National University, Seoul 08826, South Korea,Seoul National University, Republic of Korea (författare)
  • Noh, ChanwooDepartment of Chemistry, Seoul National University, Seoul 08826, South Korea,Seoul National University, Republic of Korea (författare)
  • Oh, Kyu HwanDepartment of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea,Seoul National University, Republic of Korea (författare)
  • Jung, YounJoonDepartment of Chemistry, Seoul National University, Seoul 08826, South Korea,Seoul National University, Republic of Korea (författare)
  • Larsson, J. AndreasLuleå tekniska universitet,Materialvetenskap,Luleå University of Technology, Sweden(Swepub:ltu)landar (författare)
  • Jung, YeonwoongNanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States. Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States. Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32826, United States,University of Central Florida, USA;University of Central Florida, USA (författare)
  • NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United StatesUniversity of Central Florida, USA (creator_code:org_t)

Sammanhörande titlar

  • Ingår i:ACS Applied Materials and Interfaces: American Chemical Society (ACS)12:9, s. 10839-108511944-82441944-8252

Internetlänk

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy