SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Reisch T)
 

Sökning: WFRF:(Reisch T) > (2020-2023) > Porosity in wire ar...

Porosity in wire arc additive manufacturing of aluminium alloys

Hauser, Tobias (författare)
Luleå tekniska universitet,Produkt- och produktionsutveckling,Technology department, Siemens AG, D-81739 Munich, Germany
Reisch, Raven T. (författare)
Chair of Robotics, Artificial Intelligence and Real-time Systems, Technical University of Munich, D-80333 Munich, Germany. Technology department, Siemens AG, D-81739 Munich, Germany
Breese, Philipp P. (författare)
Coating Technology, Technical University Berlin, Pascalstr. 8–9, D-10587 Berlin, Germany. Technology department, Siemens AG, D-81739 Munich, Germany
visa fler...
Lutz, Benjamin S. (författare)
Technology department, Siemens AG, D-81739 Munich, Germany
Pantano, Matteo (författare)
Technology department, Siemens AG, D-81739 Munich, Germany
Nalam, Yogesh (författare)
Technology department, Siemens AG, D-81739 Munich, Germany
Bela, Katharina (författare)
Technology department, Siemens AG, D-81739 Munich, Germany
Kamps, Tobias (författare)
Technology department, Siemens AG, D-81739 Munich, Germany
Volpp, Joerg (författare)
Luleå tekniska universitet,Produkt- och produktionsutveckling
Kaplan, Alexander F.H (författare)
Luleå tekniska universitet,Produkt- och produktionsutveckling
visa färre...
 (creator_code:org_t)
Elsevier, 2021
2021
Engelska.
Ingår i: Additive Manufacturing. - : Elsevier. - 2214-8604 .- 2214-7810. ; 41
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Wire Arc Additive Manufacturing is a near-net-shape processing technology which allows cost-effective manufacturing of large and customized metal parts. Processing of aluminium in Wire Arc Additive Manufacturing is quite challenging, especially in terms of porosity. In the present work, pore behaviour in Wire Arc Additive Manufacturing of AW4043/AlSi5(wt%) was investigated and a post-process monitoring approach was developed. It has been observed that as the shielding gas flow rate increases, the porosity in aluminium parts also increases due to the rapid solidification of the melt pool by forced convection. The higher convection rate seems to limit the escape of gas inclusions. Furthermore, gas inclusions escaping from the melt pool leave cavities on the surface of each deposited layer. Process camera imaging is used to monitor these cavities to acquire information about the porosity in the part. The observations were supported by Computational Fluid Dynamics simulations which show that the gas flow rate correlates with the porosity in aluminium parts manufactured by Wire Arc Additive Manufacturing. Since a lower gas flow rate leads to reduced convective cooling, the melt pool remains liquid for a longer period allowing pores to escape for a longer period and thus reducing porosity. Based on these investigations, a monitoring approach is presented.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Materialteknik -- Bearbetnings-, yt- och fogningsteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Materials Engineering -- Manufacturing, Surface and Joining Technology (hsv//eng)

Nyckelord

WAAM
Robot-based
Anomaly
Monitoring
Computer vision
Produktionsutveckling
Manufacturing Systems Engineering

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy