SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Evers D. C.)
 

Sökning: WFRF:(Evers D. C.) > Sub-barrier quasifi...

Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

Hinde, D. J. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia
Jeung, D. Y. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia
Prasad, E. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia; Department of Physics, School of Mathematical and Physical Sciences, Central University of Kerala, Kasaragod, 671314, India
visa fler...
Wakhle, A. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia; Cyclotron Institute, Texas A and M University, College Station, 77843, TX, United States
Dasgupta, M. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia
Evers, M. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia; ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, 2601, ACT, Australia
Luong, D. H. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia; Scandinavian Health Limited, Taiwan Branch, 136 Guosheng 2nd Street, Taoyuan District, Taoyuan City, 330, Taiwan
du Rietz, Rickard (författare)
Malmö universitet,Institutionen för materialvetenskap och tillämpad matematik (MTM),Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia
Simenel, C. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia
Simpson, E. C. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia
Williams, E. (författare)
Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, 2601, ACT, Australia
visa färre...
 (creator_code:org_t)
American Physical Society, 2018
2018
Engelska.
Ingår i: Physical Review C. - : American Physical Society. - 2469-9985 .- 2469-9993. ; 97:2
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Lowexcitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near Pb-208, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP = 14. For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP similar to 8. Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely suppressed by these two quasifission processes, since the sub-barrier heavy element yield is likely to be determined by the product of the probabilities of surviving each quasifission process.

Nyckelord

Physics
Nuclear

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy