SwePub
Sök i LIBRIS databas

  Extended search

WFRF:(Singh Riti)
 

Search: WFRF:(Singh Riti) > Multi-Disciplinary ...

Multi-Disciplinary Conceptual Design of Future Jet Engine Systems

Kyprianidis, Konstantinos G. (author)
Cranfield University, UK,Future Energy Center
Ogaji, Stephen O. T. (thesis advisor)
Cranfield University
Singh, Riti (thesis advisor)
Cranfield University
show more...
Saravanmuttoo, Herbert, Professor (opponent)
Carleton University, Ottawa, Canada
show less...
 (creator_code:org_t)
Cranfield : Cranfield University, 2010
English 279 s.
  • Doctoral thesis (other academic/artistic)
Abstract Subject headings
Close  
  • This thesis describes various aspects of the development of a multi-disciplinary aero engine conceptual design tool, TERA2020 (Techno-economic, Environmental and Risk Assessment for 2020), based on an explicit algorithm that considers: engine performance, engine aerodynamic and mechanical design, aircraft design and performance, emissions prediction and environmental impact, engine and airframe noise, and production, maintenance and direct operating costs.As part of this research effort, a newly-derived semi-empirical NOx correlation for modern rich-burn single-annular combustors is proposed. The development of a numerical methods library is also presented, including an improved gradient-based algorithm for solving non-linear equation systems. Common assumptions made in thermo-fluid modelling for gas turbines and their effect on caloric properties are investigated, while the impact of uncertainties on performance calculations and emissions predictions at aircraft system level is assessed. Furthermore, accuracy limitations in assessing novel engine core concepts as imposed by current practice in thermo-fluid modelling are identified.The TERA2020 tool is used for quantifying the potential benefits from novel technologies for three low pressure spool turbofan architectures.  The impact of failing to deliver specific component technologies is quantified, in terms of power plant noise and CO2 emissions. To address the need for higher engine thermal efficiency, TERA2020 is again utilised; benefits from the potential introduction of heat-exchanged cores in future aero engine designs are explored and a discussion on the main drivers that could support such initiatives is presented. Finally, an intercooled core and conventional core turbofan engine optimisation procedure using TERA2020 is presented. A back-to-back comparison between the two engine configurations is performed and fuel optimal designs for 2020 are proposed.Whilst the detailed publications and the work carried out by the author, in a collaborative effort with other project partners, is presented in the main body of this thesis, it is important to note that this work is supported by 20 conference and journal papers.

Subject headings

TEKNIK OCH TEKNOLOGIER  -- Naturresursteknik -- Energisystem (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Environmental Engineering -- Energy Systems (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Rymd- och flygteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Aerospace Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)
TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Farkostteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Vehicle Engineering (hsv//eng)

Keyword

Gas Turbine
Intercooled
Recuperated
Turbofan
Future
Simulation
Performance
Aircraft
Emissions
Multi-disciplinary
Jet Engine
Energy- and Environmental Engineering
energi- och miljöteknik

Publication and Content Type

vet (subject category)
dok (subject category)

Find in a library

To the university's database

Search outside SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view