SwePub
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Angulo R)
 

Sökning: WFRF:(Angulo R) > Preliminary design,...

Preliminary design, optimization and CFD analysis of an organic rankine cycle radial turbine rotor

da Silva, E. R. (författare)
Federal University of Itajubá, Institute of Mechanical Engineering, 37500-901, MG CEP, Brazil
Kyprianidis, Konstantinos (författare)
Mälardalens högskola,Framtidens energi
Camacho, R. G. R. (författare)
Federal University of Itajubá, Institute of Mechanical Engineering, 37500-901, MG CEP, Brazil
visa fler...
Säterskog, M. (författare)
Propulsion Aerodynamics & Performance, Saab AB, Linköping, SE-58188, Sweden
Angulo, T. M. A. (författare)
visa färre...
 (creator_code:org_t)
Elsevier Ltd, 2021
2021
Engelska.
Ingår i: Applied Thermal Engineering. - : Elsevier Ltd. - 1359-4311 .- 1873-5606. ; 195
  • Tidskriftsartikel (refereegranskat)
Abstract Ämnesord
Stäng  
  • The present study describes the development of a preliminary design of a rotor for a radial turbine operating in an organic Rankine cycle. An optimization algorithm is applied to the preliminary design in order to obtain a better configuration of the geometric parameters that provides good quantification of the efficiency in the turbine, a priori, since the application of optimization processes applied to three-dimensional problems consume a lot of computational resources. The strategy makes it possible to obtain an optimized geometry to obtain flow field analyzes by applying computational fluid dynamics techniques. The working fluid R236fa was used for comparison with the literature, as it presents a positive slope of the saturation curve, and thus it is possible to work with lower temperatures. The R245fa working fluid is more suitable to the operating conditions of the proposed cycle, allows an overpressure in the condenser and allows higher levels of system efficiency. The losses at the rotor nozzle were initially modeled using a mean line design approach. The preliminary design was implemented in a commercial code Matlab®, as well as the optimization algorithm, CRSA (Controlled Random Search Algorithm), and the real gas formulations were used based on the NIST REFPROP® database. The present study is presented under three work routes: i) Development of the preliminary design methodology for a radial turbine that operates with ORC producing 50 kW of power, in order to compare with other methodologies presented in the literature. The results were compared with results observed in the literature, and demonstrate agreement between the reference geometry and the thermodynamic parameters. The total-total efficiencies of the reference turbine designs were 76.23% (R236fa) and 79.28% (R245fa); ii) Optimization by CRSA of the preliminary design of a radial turbine developed on the basis of flow coefficient and load coefficient correlations. A three-dimensional analysis of the flow through the blade section using computational fluid dynamics was performed in the final optimized design to confirm the preliminary design and subsequently analyze its characteristics. The optimization focused on the R245fa working fluid. Although several optimized preliminary designs are available in the literature with efficiency levels of up to 90%, the preliminary design choices made will only be valid for machines operating with ideal gases, that is, exhaust gases typical of an air-breathing combustion engine. For machines operating with real gases, such as organic working fluids, the design options need to be rethought and a preliminary design optimization process must be introduced. As an important result observed, an efficiency of 82.4% was obtained in the final design of the radial turbine operating with R245fa after the optimization process.

Ämnesord

TEKNIK OCH TEKNOLOGIER  -- Maskinteknik -- Energiteknik (hsv//swe)
ENGINEERING AND TECHNOLOGY  -- Mechanical Engineering -- Energy Engineering (hsv//eng)

Nyckelord

CFD
Organic Ranking Cycle
Preliminary design optimization
R245fa
Radial turbine

Publikations- och innehållstyp

ref (ämneskategori)
art (ämneskategori)

Hitta via bibliotek

Till lärosätets databas

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy